Solveeit Logo

Question

Mathematics Question on Vector Algebra

A unit vector perpendicular to the plane containing the vectors i^j^+k^\hat {i}-\hat {j}+\hat{k} and i^+j^+k^ -\hat{i}+\hat {j}+\hat{k} is

A

±i^j^2\pm \frac {\hat {i}-\hat {j}} {\sqrt {2}}

B

±i^k^2\pm \frac {\hat {i}-\hat {k}} {\sqrt {2}}

C

±j^k^2\pm \frac {\hat {j}-\hat {k}} {\sqrt {2}}

D

i^+j^2 \mp \frac {\hat {i}+\hat {j}} {\sqrt {2}}

Answer

i^+j^2 \mp \frac {\hat {i}+\hat {j}} {\sqrt {2}}

Explanation

Solution

Let a=i^j^+k^,b=i^+j^+k^a =\hat{ i }-\hat{ j }+\hat{ k }, b =-\hat{ i }+\hat{ j }+\hat{ k } An unit vector perpendicular to the plane a and b =±a×ba×b=\pm \frac{ a \times b }{| a \times b |} Now, a×b=i^j^k^ 111 111a \times b =\begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\\ 1 & -1 & 1 \\\ -1 & 1 & 1\end{vmatrix} =i^(11)j^(1+1)+k^(11)=\hat{ i }(-1-1)-\hat{ j }(1+1)+\hat{ k }(1-1) =2i^2j^=-2 \hat{ i }-2 \hat{ j } a×b=22+22=22| a \times b |=\sqrt{2^{2}+2^{2}}=2 \sqrt{2} a×ba×b=2(i^+j^)22=(i^+j^)2\therefore \frac{ a \times b }{| a \times b |} =\mp \frac{2(\hat{ i }+\hat{ j })}{2 \sqrt{2}}=\mp \frac{(\hat{ i }+\hat{ j })}{\sqrt{2}}