Solveeit Logo

Question

Mathematics Question on Vector Algebra

A unit vector perpendicular to the plane containing the vectors i^+2j^+k^\hat{i} + 2 \hat{j} + \hat{k} and 2i^+j^+3k^-2 \hat{i} + \hat{j} + 3\hat{k} is

A

i^+j^k^3\frac{- \hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}

B

i^+j^+k^3\frac{ \hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}

C

i^j^k^3\frac{- \hat{i} - \hat{j} - \hat{k}}{\sqrt{3}}

D

i^j^+k^3\frac{- \hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}

Answer

i^+j^k^3\frac{- \hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}

Explanation

Solution

n^=(a×ba×b)\hat{n}=\left(\frac{\vec{a}\times\vec{b}}{\left|\vec{a}\times\vec{b}\right|}\right)
a×b=i^j^k^ 121 213=5i^5j^+5k^\vec{a}\times\vec{b}=\left|\begin{matrix}\hat{i}&\hat{j}&\hat{k}\\\ 1&2&1\\\ -2&1&3\end{matrix}\right|=5\hat{i}-5\hat{j}+5\hat{k}
a×b=53\left|\vec{a}\times\vec{b}\right|=5\sqrt{3}
n^=i^j^+k^3\therefore\, \hat{n}=\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}} or n^=i+jk^3 \hat{n}=\frac{-i+j-\hat{k}}{\sqrt{3}}