Solveeit Logo

Question

Question: A unit vector perpendicular to each of the vector \(2\mathbf{i} - \mathbf{j} + \mathbf{k}\) and \(3\...

A unit vector perpendicular to each of the vector 2ij+k2\mathbf{i} - \mathbf{j} + \mathbf{k} and 3i+4jk3\mathbf{i} + 4\mathbf{j} - \mathbf{k} is equal to

A

(3i+5j+11k)155\frac{( - 3\mathbf{i} + 5\mathbf{j} + 11\mathbf{k})}{\sqrt{155}}

B

(3i5j+11k)155\frac{(3\mathbf{i} - 5\mathbf{j} + 11\mathbf{k})}{\sqrt{155}}

C

(6i4jk)53\frac{(6\mathbf{i} - 4\mathbf{j} - \mathbf{k})}{\sqrt{53}}

D

(5i+3j)34\frac{(5\mathbf{i} + 3\mathbf{j})}{\sqrt{34}}

Answer

(3i+5j+11k)155\frac{( - 3\mathbf{i} + 5\mathbf{j} + 11\mathbf{k})}{\sqrt{155}}

Explanation

Solution

Let a=2ij+k\mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} and b=3i+4jk,\mathbf{b} = 3\mathbf{i} + 4\mathbf{j} - \mathbf{k}, then a unit vector perpendicular to a\mathbf{a} and b\mathbf{b} is a×ba×b\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}

Here a×b=3i+5j+11k\mathbf{a} \times \mathbf{b} = - 3\mathbf{i} + 5\mathbf{j} + 11\mathbf{k}

Unit vector is 3i+5j+11k155\frac{- 3\mathbf{i} + 5\mathbf{j} + 11\mathbf{k}}{\sqrt{155}}.