Solveeit Logo

Question

Question: A unit vector is perpendicular to both the vectors \[\hat{i} +\hat{j}\] and \[\hat{j} +\hat{k}\] is ...

A unit vector is perpendicular to both the vectors i^+j^\hat{i} +\hat{j} and j^+k^\hat{j} +\hat{k} is
A). i^j^+k^3\dfrac{-\hat{i} -\hat{j} +\hat{k} }{\sqrt{3} }
B). i^+j^k^3\dfrac{\hat{i} +\hat{j} -\hat{k} }{3}
C). i^+j^+k^3\dfrac{\hat{i} +\hat{j} +\hat{k} }{\sqrt{3} }
D). i^j^+k^3\dfrac{\hat{i} -\hat{j} +\hat{k} }{\sqrt{3} }

Explanation

Solution

Hint: In this question it is given that, we have to find the unit vector which is perpendicular to the vectors i^+j^\hat{i} +\hat{j} and j^+k^\hat{j} +\hat{k}. So to find the solution we need to know that, if a\vec{a} and b\vec{b} be two vectors, then the cross product of two vectors (a×b\vec{a} \times \vec{b}) is always perpendicular to the a\vec{a} and b\vec{b}.
So by using the above concept we have to find the perpendicular vector.

Complete step-by-step solution:
Given vectors are i^+j^\hat{i} +\hat{j} and j^+k^\hat{j} +\hat{k}, where i^,j^,k^\hat{i} ,\hat{j} ,\hat{k} are the unit vectors.
Let us consider,
a=i^+j^\vec{a} =\hat{i} +\hat{j} and b=j^+k^\vec{b} =\hat{j} +\hat{k}
Now we are going to find the cross product of a and b\vec{a} \ \text{and} \ \vec{b}, for this let us consider the cross product of a and b\vec{a} \ \text{and} \ \vec{b} is c\vec{c}.
Therefore,
c=a×b\vec{c} =\vec{a} \times \vec{b}
c=i^j^k^ 110 011\Rightarrow \vec{c} =\begin{vmatrix}\hat{i} &\hat{j} &\hat{k} \\\ 1&1&0\\\ 0&1&1\end{vmatrix}
Now by expanding the determinant, we get,
c=i^(1×10×1)+j^(0×01×1)+k^(1×10×1)\vec{c} =\hat{i} \left( 1\times 1-0\times 1\right) +\hat{j} \left( 0\times 0-1\times 1\right) +\hat{k} \left( 1\times 1-0\times 1\right)
c=i^j^+k^\Rightarrow \vec{c} =\hat{i} -\hat{j} +\hat{k}
Therefore c\vec{c} is the vector which is perpendicular to the vectors a\vec{a} and b\vec{b}.
So in order to find the solution we need to find the unit vector along the direction of vector c.
So as we know that the unit vector of c is c^=cc\hat{c} =\dfrac{\vec{c} }{\left\vert \vec{c} \right\vert }.
c^=i^j^+k^i^j^+k^\therefore \hat{c} =\dfrac{\hat{i} -\hat{j} +\hat{k} }{\left\vert \hat{i} -\hat{j} +\hat{k} \right\vert }
=i^j^+k^12+(1)2+12=\dfrac{\hat{i} -\hat{j} +\hat{k} }{\sqrt{1^{2}+\left( -1\right)^{2} +1^{2}} }
=i^j^+k^1+1+1=\dfrac{\hat{i} -\hat{j} +\hat{k} }{\sqrt{1+1+1} }
=i^j^+k^3=\dfrac{\hat{i} -\hat{j} +\hat{k} }{\sqrt{3} }
Therefore, i^j^+k^3\dfrac{\hat{i} -\hat{j} +\hat{k} }{\sqrt{3} } is the unit vector which is perpendicular to the vectors a\vec{a} and b\vec{b}.
Hence the correct option is option D.

Note: To solve this type of question you need to know that if a=x1i^+y1j^+z1k^\vec{a} =x_{1}\hat{i} +y_{1}\hat{j} +z_{1}\hat{k} and b=x2i^+y2j^+z2k^\vec{b} =x_{2}\hat{i} +y_{2}\hat{j} +z_{2}\hat{k} be two vectors then their cross product is,
a×b=i^j^k^ x1y;1z;1 x2y;2z;2\vec{a} \times \vec{b} =\begin{vmatrix}\hat{i} &\hat{j} &\hat{k} \\\ x_{1}&y;_{1}&z;_{1}\\\ x_{2}&y;_{2}&z;_{2}\end{vmatrix}
And determinant of any vector is can be written as,
a=x12+y12+z12\left\vert \vec{a} \right\vert =\sqrt{x^{2}_{1}+y^{2}_{1}+z^{2}_{1}}.