Solveeit Logo

Question

Question: A unit vector in the direction of resultant vector of ![](https://cdn.pureessence.tech/canvas_13.png...

A unit vector in the direction of resultant vector of is

A

B

C

D

Answer

Explanation

Solution

Here, A=2i^+3j^+k^\overrightarrow { \mathrm { A } } = - 2 \hat { \mathrm { i } } + 3 \hat { \mathrm { j } } + \hat { \mathrm { k } }

The resultant vector of and B\vec { B } is

= (2i^+3j^+k^)+(i^+2j^4k^)=i^+5j^3k^( - 2 \hat { i } + 3 \hat { j } + \hat { k } ) + ( \hat { i } + 2 \hat { j } - 4 \hat { k } ) = - \hat { i } + 5 \hat { j } - 3 \hat { k } R=(1)2+(5)2+(3)2=1+25+9=35| \overrightarrow { \mathrm { R } } | = \sqrt { ( - 1 ) ^ { 2 } + ( 5 ) ^ { 2 } + ( - 3 ) ^ { 2 } } = \sqrt { 1 + 25 + 9 } = \sqrt { 35 }

Units vector in the directions of resultant vector or A\vec { A } and is

R^=RR=i^+5j^3k^35\hat { R } = \frac { \vec { R } } { | \vec { R } | } = \frac { - \hat { i } + 5 \hat { j } - 3 \hat { k } } { \sqrt { 35 } }