Solveeit Logo

Question

Question: A unit vector **a** makes an angle \(\frac{\pi}{4}\) with z-axis. If \(\mathbf{a} + \mathbf{i} + \ma...

A unit vector a makes an angle π4\frac{\pi}{4} with z-axis. If a+i+j\mathbf{a} + \mathbf{i} + \mathbf{j} is a unit vector, then a is equal to

A

i2+j2+k2\frac{\mathbf{i}}{2} + \frac{\mathbf{j}}{2} + \frac{\mathbf{k}}{\sqrt{2}}

B

i2+j2k2\frac{\mathbf{i}}{2} + \frac{\mathbf{j}}{2} - \frac{\mathbf{k}}{\sqrt{2}}

C

i2j2+k2- \frac{\mathbf{i}}{2} - \frac{\mathbf{j}}{2} + \frac{\mathbf{k}}{\sqrt{2}}

D

None of these

Answer

i2j2+k2- \frac{\mathbf{i}}{2} - \frac{\mathbf{j}}{2} + \frac{\mathbf{k}}{\sqrt{2}}

Explanation

Solution

Let a=li+mj+nk,\mathbf{a} = l\mathbf{i} + m\mathbf{j} + n\mathbf{k}, where l2+m2+n2=1.l^{2} + m^{2} + n^{2} = 1.

a makes an angle π4\frac{\pi}{4} with zz -axis.

n=12,\therefore n = \frac{1}{\sqrt{2}}, l2+m2=12l^{2} + m^{2} = \frac{1}{2} …..(i)

a=li+mj+k2\therefore\mathbf{a} = l\mathbf{i} + m\mathbf{j} + \frac{\mathbf{k}}{\sqrt{2}}

a+i+j=(l+1)i+(m+1)j+k2\mathbf{a} + \mathbf{i} + \mathbf{j} = (l + 1)\mathbf{i} + (m + 1)\mathbf{j} + \frac{\mathbf{k}}{\sqrt{2}}

Its magnitude is 1, hence (l+1)2+(m+1)2=12(l + 1)^{2} + (m + 1)^{2} = \frac{1}{2} .....(ii)

From (i) and (ii), 2lm=12l=m=122lm = \frac{1}{2} \Rightarrow l = m = - \frac{1}{2}

Hence a=i2j2+k2\mathbf{a} = - \frac{\mathbf{i}}{2} - \frac{\mathbf{j}}{2} + \frac{\mathbf{k}}{\sqrt{2}}.