Solveeit Logo

Question

Physics Question on mechanical properties of solids

A uniformly tapering conical wire is made from a material of Young?s modulus YY and has a normal, unextended length LL. The radii, at the upper and lower ends of this conical wire, have values RR and 3R3R, respectively. The upper end of the wire is fixed to a rigid support and a mass MM is suspended from its lower end. The equilibrium extended length, of this wire, would equal :

A

L(1+29MgπYR2)L \left(1 + \frac{2}{9} \frac{Mg}{\pi YR^{2}} \right)

B

L(1+13MgπYR2)L \left(1 + \frac{1}{3} \frac{Mg}{\pi YR^{2}} \right)

C

L(1+19MgπYR2)L \left(1 + \frac{1}{9} \frac{Mg}{\pi YR^{2}} \right)

D

L(1+23MgπYR2)L \left(1 + \frac{2}{3} \frac{Mg}{\pi YR^{2}} \right)

Answer

L(1+13MgπYR2)L \left(1 + \frac{1}{3} \frac{Mg}{\pi YR^{2}} \right)

Explanation

Solution

r=2RLx+Rr=\frac{2R}{L}x+R
dl=Mgdxπ[2RLx×R]2Y\int dl=\int \frac{Mgdx}{\pi\left[\frac{2R}{L}x\times R\right]^{2}Y}
ΔL=Mgπy[1[2RxL+R]0L×L2R]\Delta L=\frac{Mg}{\pi y}\left[-\frac{1}{\left[\frac{2Rx}{L}+R\right]^{L}_{_{_0}}}\times\frac{L}{2R}\right]
=MgL3πR2y=\frac{MgL}{3\pi R^{2}y}