Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A uniformly charged solid sphere of radius RR has potential V09V _{0}\, 9 measured with respect to \infty ) on its surface. For this sphere the equipotential surfaces with potentials 3V02\frac{3 V _{0}}{2}, 5V04,3V04\frac{5 V _{0}}{4}, \frac{3 V _{0}}{4} and V04\frac{ V _{0}}{4} have radius R1,R2,R3R _{1}, R _{2}, R _{3} and R4R _{4} respectively. Then

A

R10R_1 \ne 0 and (R2R1)>(R4R3) (R_2-R_1) >(R_4-R_3)

B

R1=0R_1 = 0 and R2>(R4R3) R_2 >(R_4-R_3)

C

2R<R42R < R_4

D

R1=0R_1 = 0 and R2<(R4R3)R_2 < (R_4-R_3)

Answer

2R<R42R < R_4

Explanation

Solution


R1=3V02;R2=5V04;R33V04;R4=V04R_{1}=\frac{3 V_{0}}{2} ; R_{2}=\frac{5 V_{0}}{4} ; R_{3} \frac{3 V_{0}}{4} ; R_{4}=\frac{V_{0}}{4}
r<RV=KQ2R3(3R2r2)\therefore r< R \,\,\,\,\,\,V=\frac{K Q}{2 R^{3}}\left(3 R^{2}-r^{2}\right)
v=3V02,R1=0v =\frac{3 V _{0}}{2}, \,R _{1}=0
5V04=KQ2R3(3R2R22)\frac{5 V_{0}}{4}=\frac{K Q}{2 R^{3}}\left(3 R^{2}-R_{2}^{2}\right)
R2=R2\therefore R _{2}=\frac{ R }{\sqrt{2}}
r>Rr>R
3V04=KQR3\frac{3 V_{0}}{4}=\frac{K Q}{R_{3}}
R3=4KQ3V0=KQ×R3×KQ=R3R_{3}=\frac{4 K Q}{3 V_{0}}=\frac{K Q \times R}{3 \times K Q}=\frac{R}{3}
V04=KQR4\frac{ V _{0}}{4}=\frac{ KQ }{ R _{4}}
R4=4KQV0=4KQKQ×R=4R\therefore R _{4}=\frac{4 KQ }{ V _{0}}=\frac{4 KQ }{ KQ } \times R =4 R
On comparing we get
(1)&(2)(1) \&(2)