Solveeit Logo

Question

Physics Question on Electric charges and fields

A uniformly charged conducting sphere of diameter 1.2m1.2 \,m has a surface charge density of 8.1μC/m28.1 \,\mu C / m ^{2}. Find the total electric flux leaving the surface of the sphere.

A

4.1×106Nm2/C4.1 \times 10^{6} \,N-m^{2} / C

B

1.3×104Nm2/C1.3 \times 10^{4} \,N-m^{2} / C

C

4.1×106Nm2/C-4.1 \times 10^{6} \,N-m^{2} / C

D

Zero

Answer

4.1×106Nm2/C4.1 \times 10^{6} \,N-m^{2} / C

Explanation

Solution

The given, R=0.6mR=0.6 m,
ε0=8.85×1012C2N1m2\varepsilon_{0}=8.85 \times 10^{-12} C^{2} N^{-1} m^{-2}
σ=8.1×106C/m2\sigma=8.1 \times 10^{-6} C / m^{2}
ϕE=?\phi_{E}=?
The change on the sphere q=4πR2.σq=4 \pi R^{2} . \sigma
=4×3.14×(0.6)2×8.1×106=4 \times 3.14 \times(0.6)^{2} \times 8.1 \times 10^{-6}
=36.62×106C=36.62 \times 10^{-6} C
The total electric flux ϕE=qε0\phi_{E}=\frac{q}{\varepsilon_{0}}
=36.62×1068.85×1012=\frac{36.62 \times 10^{-6}}{8.85 \times 10^{-12}}
=36.62×1068.85=\frac{36.62 \times 10^{6}}{8.85}
=4.13×106Nm2/C=4.13 \times 10^{6} \,N - m ^{2} / C