Solveeit Logo

Question

Physics Question on Center of Mass

A uniform thin metal plate of mass 10kg10 \, \text{kg} with dimensions is shown. The ratio of xx and yy coordinates of the center of mass of the plate is n9\frac{n}{9}. The value of nn is ______. metal plate

Answer

The mass of the plate is calculated in three sections:
m1=σ×5=10kg,m1 = σ × 5 = 10 kg,
m2=σ×1=2kg,m2 = σ × 1 = 2 kg,
m3=σ×6=12kg.m3 = σ × 6 = 12 kg.
Using the coordinates of each center of mass, we calculate the combined center of mass:
m1x1+m2x2=m3x3.m_1x_1 + m_2x_2 = m_3x_3.
101.5+2(1.5)=12x1    x1=1.5cm.10 \cdot 1.5 + 2 \cdot (1.5) = 12 \cdot x_1 \implies x_1 = 1.5 \, \text{cm}.
Similarly:
m1y1+m2y2=m3y3.m_1y_1 + m_2y_2 = m_3y_3.
101+2(1.5)=12y1    y1=0.9cm.10 \cdot 1 + 2 \cdot (1.5) = 12 \cdot y_1 \implies y_1 = 0.9 \, \text{cm}.
The ratio of x1x_1 to y1y_1 is:
x1y1=1.50.9=159.\frac{x_1}{y_1} = \frac{1.5}{0.9} = \frac{15}{9}.
Thus:
n=15.n = 15.
Final Answer: n=15n = 15.

Explanation

Solution

The mass of the plate is calculated in three sections:
m1=σ×5=10kg,m1 = σ × 5 = 10 kg,
m2=σ×1=2kg,m2 = σ × 1 = 2 kg,
m3=σ×6=12kg.m3 = σ × 6 = 12 kg.
Using the coordinates of each center of mass, we calculate the combined center of mass:
m1x1+m2x2=m3x3.m_1x_1 + m_2x_2 = m_3x_3.
101.5+2(1.5)=12x1    x1=1.5cm.10 \cdot 1.5 + 2 \cdot (1.5) = 12 \cdot x_1 \implies x_1 = 1.5 \, \text{cm}.
Similarly:
m1y1+m2y2=m3y3.m_1y_1 + m_2y_2 = m_3y_3.
101+2(1.5)=12y1    y1=0.9cm.10 \cdot 1 + 2 \cdot (1.5) = 12 \cdot y_1 \implies y_1 = 0.9 \, \text{cm}.
The ratio of x1x_1 to y1y_1 is:
x1y1=1.50.9=159.\frac{x_1}{y_1} = \frac{1.5}{0.9} = \frac{15}{9}.
Thus:
n=15.n = 15.
Final Answer: n=15n = 15.