Solveeit Logo

Question

Question: A uniform sphere of mass M and radius *R* is placed on a rough horizontal surface (Figure). The sphe...

A uniform sphere of mass M and radius R is placed on a rough horizontal surface (Figure). The sphere is struck horizontally at a height h from the floor.

Match the Column I with Column II.

Column IColumn II
(A)(p)

Sphere rolls without slipping

with a constant velocity and

no loss of energy.

(B)h = R(q)

Sphere spins clockwise,

loses energy by friction

(C)(r)

Sphere spins anti –

clockwise loses energy by

friction.

(D)(s)

Sphere has only a

translational motion. Loses

energy by friction.

A

A - r, B - s, C - q, D – p

B

A - s, B - p, C - r, D – q

C

A - q, B - r, C - p, D – s

D

A - p, B - q, C - s, D – r

Answer

A - r, B - s, C - q, D – p

Explanation

Solution

Let the sphere of mass M and radius R be struck horizontally at a height h from the floor, as shown in the figure.

The sphere will roll without slipping when angular momentum of sphere about its centre of mass is. Mv(hR)=Iω=(25MR2)(vR)\operatorname { Mv } ( \mathrm { h } - \mathrm { R } ) = \mathrm { I } \omega = \left( \frac { 2 } { 5 } \mathrm { MR } ^ { 2 } \right) \left( \frac { \mathrm { v } } { \mathrm { R } } \right)

(\therefore For a sphere , I=25MR2\mathrm { I } = \frac { 2 } { 5 } \mathrm { MR } ^ { 2 })

Mv(hR)=25MvR\operatorname { Mv } ( \mathrm { h } - \mathrm { R } ) = \frac { 2 } { 5 } \operatorname { MvR }

hR=25Rh - R = \frac { 2 } { 5 } R or h=75Rh = \frac { 7 } { 5 } R

\therefore The sphere will roll without slipping with a constant velocity and no loss energy when,

Torque due to applied force about centre of mass, τ=F(hR)\tau = \mathrm { F } ( \mathrm { h } - \mathrm { R } )

If, sphere will have only translational motion. It would lose energy by friction.

Bs\therefore \mathrm { B } - \mathrm { s }

The sphere will spin clockwise, when τ\tau is positive, i.e., h > R

Again the sphere will spin anticlockwise, when τ\tau is negative, i.e, , h < R

Ar\therefore \mathrm { A } - \mathrm { r }