Solveeit Logo

Question

Physics Question on Centre of mass

A uniform solid right circular cone of base radius rr is joined to a uniform solid hemisphere of radius rr and of the same density, so as to have a common face. The centre of mass of the composite solid lies on the common face. The height of the cone is

A

2r2r

B

3r\sqrt{3}r

C

3r3r

D

6r\sqrt{6}r

Answer

3r\sqrt{3}r

Explanation

Solution

Volume of cone =13πr2h=\frac{1}{3}\pi r^{2}h Mass of cone, m1=ρ×13πr2hm_{1}=\rho \times \frac{1}{3}\pi r^{2}h Mass of hemisphere, m2=ρ×12×43πr3m_{2}=\rho \times \frac{1}{2}\times \frac{4}{3}\pi r^{3} =ρ×23πr3=\rho \times \frac{2}{3}\pi r^{3} Now, Y=m1y1+m2y2m1+m2Y=\frac{m_{1} y_{1} + m_{2} y_{2}}{m_{1} + m_{2}} 0=ρ×13(πr)2h×h4+23(πr)3(3r8)ρ×13(πr)2h+ρ×23(πr)2\Rightarrow 0=\frac{\rho \times \frac{1}{3} \left(\pi r\right)^{2} h \times \frac{h}{4} + \frac{2}{3} \left(\pi r\right)^{3} \left(\right. - \frac{3 r}{8} \left.\right)}{\rho \times \frac{1}{3} \left(\pi r\right)^{2} h + \rho \times \frac{2}{3} \left(\pi r\right)^{2}} ρ×13(πr)3(h242r×3r8)=0\Rightarrow \rho \times \frac{1}{3}\left(\pi r\right)^{3}\left(\frac{h^{2}}{4} - 2 r \times \frac{3 r}{8}\right)=0 h243r24=0\frac{h^{2}}{4}-\frac{3 r^{2}}{4}=0 \, or h=3rh=\sqrt{3} \, r