Question
Question: A uniform rope of length \(12\,m\) and mass \(6\,kg\) hangs vertically from a rigid support. A block...
A uniform rope of length 12m and mass 6kg hangs vertically from a rigid support. A block of mass 2kg is attached to the free end of the rope. A transverse pulse of wavelength 0.06m is produced at the lower end of the rope. What is the wavelength of the pulse when it reaches the top of the rope?
(A) 0.06m
(B) 0.03m
(C) 0.12m
(D) 0.09m
Solution
Hint The wavelength can be determined by using the velocity relation, by using the velocity relation the wavelength can be determined, the velocity relation can be determined by using the velocity of the string formula, then the wave length is determined.
Useful formula:
The velocity of the wave on the string is given by,
v=mT
Where, v is the velocity of the wave of the string, T is the tension of the string and m is the mass of the string.
Complete step by step answer
Given that,
The length of the rope is given as, L=12m,
The mass which hangs vertically from a rigid support is, m=6kg,
The mass which is attached to the free end of the rope is, m=2kg,
The wavelength of the transverse pulse is given as, λ1=0.06m,
Now,
The velocity of the wave on the string is given by,
v=mT.....................(1)
The velocity relation is given by,
v1=m1T1....................(2)
Then,
v2=m2T2....................(3)
By dividing the equation (2) by the equation (3), then the relation between the two velocity is given as,
v2v1=m2T2m1T1
The mass of the string is same in all the point of the string, then the above equation is written as,
v2v1=T2T1
Now, the tension of the string is written as the product of the mass and the acceleration due to gravity, then the above equation is written as,
v2v1=8×9.82×9.8
By cancelling the same terms in the above equation, then the above equation is written as,
v2v1=82
By rearranging the terms in the above equation, then the above equation is written as,
v2v1=82
By cancelling the terms in the above equation, then the above equation is written as,
v2v1=41
By rearranging the terms in the above equation, then the above equation is written as,
v2v1=41
By taking square root in the above equation, then the above equation is written as,
v2v1=21
By rearranging the terms in the above equation, then the above equation is written as,
v2=2v1
From the above relation of the velocity, then the wavelength relation is given as,
λ2=2λ1
By substituting the wavelength in the above equation, then the above equation is written as,
λ2=2×0.06
By multiplying the terms in the above equation, then the above equation is written as,
λ2=0.12m
Hence, the option (C) is the correct answer.
Note The velocity of the string is directly proportional to the square root of the tension of the string and inversely proportional to the square root of the mass of the string. As the square root of the tension of the string increases then the velocity of the string increases.