Solveeit Logo

Question

Question: A uniform rod of mass M is hanged with two strings P and Q such that rod is horizontal. A mass m is ...

A uniform rod of mass M is hanged with two strings P and Q such that rod is horizontal. A mass m is connected by a light ideal string from the end of rod as shown. Then the maximum value of mass m upto which the string P remains tight is [Length of rod is (a + b)] :

A

[ab2b]M\left[ \frac { a - b } { 2 b } \right] M

B

[a+b2b]M\left[ \frac { a + b } { 2 b } \right] M

C

D

[a+b2a]M\left[ \frac { a + b } { 2 a } \right] M

Answer

[ab2b]M\left[ \frac { a - b } { 2 b } \right] M

Explanation

Solution

At maximum value of m, TP ® 0

\ TQ = (m + M) g … (1)

Now taking torque about centre of gravity of rod

TQ × [ab2]\left[ \frac { a - b } { 2 } \right] = mg × [a+b2]\left[ \frac { a + b } { 2 } \right]

or (m + M) [a – b] = m[a + b]

m+Mm\frac { m + M } { m } = a+bab\frac { a + b } { a - b }

1+Mm1 + \frac { \mathrm { M } } { \mathrm { m } } = a+bab\frac { a + b } { a - b } ̃ m = [ab2b]M\left[ \frac { a - b } { 2 b } \right] M