Solveeit Logo

Question

Question: A uniform rod of mass m and length l rotates in a horizontal plane with an angular velocity ωabout a...

A uniform rod of mass m and length l rotates in a horizontal plane with an angular velocity ωabout a vertical axis passing through one end. The tension in the rod at a distance x from the axis is

A

12mω2x\frac{1}{2}m\omega^{2}x

B

12mω2x2l\frac{1}{2}m\omega^{2}\frac{x^{2}}{l}

C

12mω2l(1xl)\frac{1}{2}m\omega^{2}l\left( 1 - \frac{x}{l} \right)

D

12.mω2l[l2x2]\frac{1}{2}.\frac{m\omega^{2}}{l}\left\lbrack l^{2} - x^{2} \right\rbrack

Answer

12.mω2l[l2x2]\frac{1}{2}.\frac{m\omega^{2}}{l}\left\lbrack l^{2} - x^{2} \right\rbrack

Explanation

Solution

The mass of the element = dm = (m/l)dx.

The force on the element towards the axis = T – (T + dT)

= - dT.

∴ - dT = (dm)ω2 x = (mldx)ω2x.\left( \frac{m}{l}dx \right)\omega^{2}x.

T = - mω2l.x22+constant\frac{m\omega^{2}}{l}.\frac{x^{2}}{2} + cons ⥂ \tan ⥂ t

For x = 1, T = 0.

∴ the constant = 12.mω2l2l\frac{1}{2}.\frac{m\omega^{2}l^{2}}{l}

∴ T = 12.mω2l(l2x2)\frac{1}{2}.\frac{m\omega^{2}}{l}\left( l^{2} - x^{2} \right)