Solveeit Logo

Question

Question: A uniform rod of mass \(m\) and length \(l\) rotates in a horizontal plane with an angular velocity ...

A uniform rod of mass mm and length ll rotates in a horizontal plane with an angular velocity ω\omega about a vertical axis passing through one end. The tension in the rod at a distance xx from the axis is

A

126mumω2x\frac{1}{2}\mspace{6mu} m\omega^{2}x

B

126mumω2x2l\frac{1}{2}\mspace{6mu} m\omega^{2}\frac{x^{2}}{l}

C

12mω2l(1xl)\frac{1}{2}m\omega^{2}l\left( 1 - \frac{x}{l} \right)

D

12mω2l[l2x2]\frac{1}{2}\frac{m\omega^{2}}{l}\lbrack l^{2} - x^{2}\rbrack

Answer

12mω2l[l2x2]\frac{1}{2}\frac{m\omega^{2}}{l}\lbrack l^{2} - x^{2}\rbrack

Explanation

Solution

Let rod AB­ performs uniform circular motion about point A. We have to calculate the tension in the rod at a distance x from the axis of rotation. Let mass of the small segment at a distance x is dm

So

dT=dmω2xdT = dm\omega^{2}x

=(ml)dx.ω2x=mω2l= \left( \frac{m}{l} \right)dx.\omega^{2}x = \frac{m ⥂ \omega^{2}}{l}

[x d x]

Integrating both sides xldT=mω2lxlxdx\int_{x}^{l}{dT} = \frac{m\omega^{2}}{l}\int_{x}^{l}{xdx} \Rightarrow

T=mω2l[x22]xlT = \frac{m\omega^{2}}{l}\left\lbrack \frac{x^{2}}{2} \right\rbrack_{x}^{l}

T=mω22l[l2x2]T = \frac{m\omega^{2}}{2l}\left\lbrack l^{2} - x^{2} \right\rbrack