Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A uniform rod of length LL and mass MM is held vertical, with its bottom end pivoted to the floor. The rod falls under gravity, freely turning about the pivot. If acceleration due to gravity is gg, what is the instantaneous angular speed of the rod when it makes an angle 6060^{\circ} with the vertical?

A

(gL)1/2\left(\frac{g}{L}\right)^{1 / 2}

B

(3g4L)1/2\left(\frac{3 g}{4 L}\right)^{1 / 2}

C

(3g2L)1/2\left(\frac{3 g}{2 L}\right)^{1 / 2}

D

3gl\sqrt{3 \,gl }

Answer

3gl\sqrt{3 \,gl }

Explanation

Solution

The fall of centre of gravity h
(12h)12=cos60\frac{\left(\frac{1}{2}-h\right)}{\frac{1}{2}}=\cos 60^{\circ}
h=12(1cos60)h=\frac{1}{2}\left(1-\cos 60^{\circ}\right)
Decrease in potential energy
Mgh=Mg12(1cos60)M g h=M g \frac{1}{2}\left(1-\cos 60^{\circ}\right)
Kinetic energy of rotation
=12Iω2=\frac{1}{2} I \omega^{2}
=12×MI23ω2=\frac{1}{2} \times \frac{M I^{2}}{3} \omega^{2}
Mg=12(1cos60)=MI26ω2M g=\frac{1}{2}\left(1-\cos 60^{\circ}\right)=\frac{M I^{2}}{6} \omega^{2}
ω=3g2L\Rightarrow \omega=\frac{\sqrt{3 g}}{2 L}