Solveeit Logo

Question

Physics Question on rotational motion

A uniform rod ABAB of length ll and mass mm is free to rotate about point AA. The rod is released from rest in the horizontal position. Given that the moment of inertia of the rod about AA is ml23\frac{ml^2}{3} the initial angular acceleration of the rod will be

A

2g3l\frac{2g}{3l}

B

mgl2\frac{mgl}{2}

C

3gl2\frac{3gl}{2}

D

3g2l\frac{3g}{2l}

Answer

3g2l\frac{3g}{2l}

Explanation

Solution

Torque about AA τ=mgl2\tau=mg \frac{l}{2} also, τ=Iα\tau=I \alpha Angular acceleration α=τI=mgl/2ml2/3=3g2l\alpha=\frac{\tau}{I}=\frac{mgl /2}{ml^{2}/ 3}=\frac{3g}{2l} (GivenI=ml23){\text{(Given}} \, I=\frac{ml^{2}}{3})