Solveeit Logo

Question

Question: A uniform ring of mass m is lying at a distance 1.73 a from the centre of a sphere of mass M just ov...

A uniform ring of mass m is lying at a distance 1.73 a from the centre of a sphere of mass M just over the sphere where a is the small radius of the ring as well as that of the sphere. Then gravitational force exerted is

A

GMm8a2\frac { G M m } { 8 a ^ { 2 } }

B

GMm(1.73a)2\frac { G M m } { ( 1.73 a ) ^ { 2 } }

C

3GMma2\sqrt { 3 } \frac { G M m } { a ^ { 2 } }

D

1.73GMm8a21.73 \frac { G M m } { 8 a ^ { 2 } }

Answer

1.73GMm8a21.73 \frac { G M m } { 8 a ^ { 2 } }

Explanation

Solution

Intensity due to uniform circular ring at a point on its axis I=Gmr(a2+r2)3/2I = \frac { G m r } { \left( a ^ { 2 } + r ^ { 2 } \right) ^ { 3 / 2 } }

\therefore Force on sphere F=GMmr(a2+r2)3/2F = \frac { G M m r } { \left( a ^ { 2 } + r ^ { 2 } \right) ^ { 3 / 2 } } =GMm3a(a2+(3a)2)3/2= \frac { G M m \sqrt { 3 } a } { \left( a ^ { 2 } + ( \sqrt { 3 } a ) ^ { 2 } \right) ^ { 3 / 2 } } =GMm3a(4a2)3/2=3GMm8a2= \frac { G M m \sqrt { 3 } a } { \left( 4 a ^ { 2 } \right) ^ { 3 / 2 } } = \frac { \sqrt { 3 } G M m } { 8 a ^ { 2 } } [As r=3ar = \sqrt { 3 } a]