Solveeit Logo

Question

Question: A uniform magnetic field with a slit system shown in fig. is to be used as a momentum filter for hig...

A uniform magnetic field with a slit system shown in fig. is to be used as a momentum filter for high energy charged particles. With a field B tesla, it is found that the filter transmits α\alpha -particles each of energy 535\cdot 3 MeV. The magnetic field is increased to 232\cdot 3 B Tesla and deuterons are passed into the filter. The energy of each deuteron transmitted by the filter is…
(A) 5MeV
(B) 7MeV
(C) 14MeV
(D) 21MeV

Explanation

Solution

Hint : The centripetal force required by the ion to move in a circular path is provided by the perpendicular magnetic field B.
qvB=mv2rqvB=\dfrac{m{{v}^{2}}}{r}
m is mass of charge particle to be accelerated, B is magnetic field, q is charge on particle, v is velocity of charge particle, r is radius of circular path.
The energy of particle is given E=p22mE=\dfrac{{{p}^{2}}}{2m}
p is the momentum of a particle.
Using the above formulas we will get the required result.

Complete step by step solution:
We have given, high energy charge particle in the magnetic field B Tesla.
Radius of charge particle is given by,
r=mvqB=PqB r=2EmBq \begin{aligned} & r=\dfrac{mv}{qB}=\dfrac{P}{qB} \\\ & \therefore r=\dfrac{\sqrt{2Em}}{Bq} \\\ \end{aligned}
Radius in case of α\alpha -particles
rα=2EαmαBqα{{r}_{\alpha }}=\dfrac{{{\sqrt{2{{E}_{\alpha }}m}}_{\alpha }}}{B{{q}_{\alpha }}}
Radius in case of deuteron –particle is given by
rd=2Edmd2.3Bqd{{r}_{d}}=\dfrac{{{\sqrt{2{{E}_{d}}m}}_{d}}}{2.3B{{q}_{d}}}
Since the radius for both the particle is same
2EαmαBqα=2Edmd23Bqd\dfrac{{{\sqrt{2{{E}_{\alpha }}m}}_{\alpha }}}{B{{q}_{\alpha }}}=\dfrac{{{\sqrt{2{{E}_{d}}m}}_{d}}}{2\cdot 3B{{q}_{d}}}
Squaring on both sides
2Eαmαqα2=2Edmd(23)2qd2\dfrac{2{{E}_{\alpha }}{{m}_{\alpha }}}{{{q}_{\alpha }}^{2}}=\dfrac{2{{E}_{d}}{{m}_{d}}}{{{\left( 2\cdot 3 \right)}^{2}}{{q}_{d}}^{2}} ---- (1)
Since,
qdqα=e2e=12\dfrac{{{q}_{d}}}{{{q}_{\alpha }}}=\dfrac{e}{2e}=\dfrac{1}{2}
qd is charge on deuteron, qα{{q}_{\alpha }} is charge on α\alpha -particle
mαmd=42=2\dfrac{{{m}_{\alpha }}}{{{m}_{d}}}=\dfrac{4}{2}=2
mα{{m}_{\alpha }} is mass of α\alpha -particle, md{{m}_{d}} is mass of deuteron
Eα{{E}_{\alpha }} (energy of α\alpha -particle = 5.3 MeV
Put all in eq. (1)
(2.3)2×(qdqα)2Eαmαmd=Ed (2.3)2×(12)2×5.3MeV(2)=Ed \begin{aligned} & {{\left( 2.3 \right)}^{2}}\times {{\left( \dfrac{{{q}_{d}}}{{{q}_{\alpha }}} \right)}^{2}}\dfrac{{{E}_{\alpha }}{{m}_{\alpha }}}{{{m}_{d}}}={{E}_{d}} \\\ & {{\left( 2.3 \right)}^{2}}\times {{\left( \dfrac{1}{2} \right)}^{2}}\times 5.3MeV(2)={{E}_{d}} \\\ \end{aligned}
Energy of deuteron particle is given by,
Ed=(2.3)42×2×5.3MeV Ed=14.01MeV \begin{aligned} & {{E}_{d}}={{\dfrac{\left( 2.3 \right)}{4}}^{2}}\times 2\times 5.3MeV \\\ & {{E}_{d}}=14.01MeV \\\ \end{aligned} .

Note:
Motion of charge particle in magnetic field explained below:
Then the centripetal force acquired by charged particle to move in circular path is provided by perpendicular magnetic field B is given by
Fe=mv2r{{F}_{e}}=\dfrac{m{{v}^{2}}}{r} --- (1)
Fb=qvB{{F}_{b}}=qvB --- (2)
From eq (1) and (2)
mv2r=qvB mvr=Bq \begin{aligned} & \dfrac{m{{v}^{2}}}{r}=qvB \\\ & \dfrac{mv}{r}=Bq \\\ \end{aligned}
r=mvqBr=\dfrac{mv}{qB} This is the radius of circular path.
The momentum of particle is given
P=mvP=mv
And energy of particle is,
E=P22mE=\dfrac{{{P}^{2}}}{2m}
Or
P=2mEP=\sqrt{2mE} ,
Radius of charge particle is given by
r=mvqB=PqB r=2EmBq \begin{aligned} & r=\dfrac{mv}{qB}=\dfrac{P}{qB} \\\ & \therefore r=\dfrac{\sqrt{2Em}}{Bq} \\\ \end{aligned}.