Solveeit Logo

Question

Question: A uniform disc of radius a has a hole of radius b at a distance c from the centre as shown. If the d...

A uniform disc of radius a has a hole of radius b at a distance c from the centre as shown. If the disc is free to rotate about a rod passing through the hole b, then find the MOI about the axis of rotation.

A

M2(a2+b2+2c2a2a2b2)\frac { M } { 2 } \left( a ^ { 2 } + b ^ { 2 } + \frac { 2 c ^ { 2 } a ^ { 2 } } { a ^ { 2 } - b ^ { 2 } } \right)

B

M (a2+b2+c2a2a2b2)\left( a ^ { 2 } + b ^ { 2 } + \frac { c ^ { 2 } a ^ { 2 } } { a ^ { 2 } - b ^ { 2 } } \right)

C

M2(a2+b2+c2a2a2b2)\frac { M } { 2 } \left( a ^ { 2 } + b ^ { 2 } + \frac { c ^ { 2 } a ^ { 2 } } { a ^ { 2 } - b ^ { 2 } } \right)

D

None

Answer

M2(a2+b2+2c2a2a2b2)\frac { M } { 2 } \left( a ^ { 2 } + b ^ { 2 } + \frac { 2 c ^ { 2 } a ^ { 2 } } { a ^ { 2 } - b ^ { 2 } } \right)

Explanation

Solution

Let ρ be the mass per unit area. Then MOI of the disc about O'I = πρa2 + π ρa2(c2) - πb2ρ(b22)\left( \frac { b ^ { 2 } } { 2 } \right)

=

=

and ρ =

= =