Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A uniform cylindrical rod of mass M and length L is rotating with an angular speed ω\omega . The axis of rotation is perpendicular to its axis of symmetry and passes through one of its end faces. If the room temperature increases by t and the coefficient of linear expansion of the rod is α\alpha , the magnitude of the change in its angular speed is:

A

2 ωαt\omega \alpha t

B

ωαt\omega \alpha t

C

32ωαt\frac{3}{2}\,\omega \alpha t

D

ωαt2\frac{\omega \alpha t}{2}

Answer

2 ωαt\omega \alpha t

Explanation

Solution

Since, the moment of inertia of thin rod about an axis passing through its centre of mass and perpendicular to its geometrical axis is ICM=ML212{{I}_{CM}}=\frac{M{{L}^{2}}}{12} M.I. of rod about an axis perpendicular to its geometrical axis and passes through one of the ends I1=ICM+M(L/2)2{{I}_{1}}={{I}_{CM}}+M{{(L/2)}^{2}} Theorem of parallel axis I1=ML212+ML24{{I}_{1}}=\frac{M{{L}^{2}}}{12}+\frac{M{{L}^{2}}}{4} I1=ML23{{I}_{1}}=\frac{M{{L}^{2}}}{3} If initial angular speed of rod =ω=\omega When room temperature increases by t and coefficient of linear expansion of rod is α\alpha then New M.I. of rod I2=M3(L+l)2{{I}_{2}}=\frac{M}{3}{{(L+l)}^{2}} where l=L×α×tl=L\times \alpha \times t (increment in length) No external torque is acting so angular speed will decrease. Let now angular speed =(ωΔω)=ω2=(\omega -\Delta \omega )={{\omega }_{2}} (let) According to conservation of angular momentum (Since, torque τ=0\tau =0 ) I1ω1=I2ω2{{I}_{1}}{{\omega }_{1}}={{I}_{2}}{{\omega }_{2}} ML23ω=M3(L+l)2.(ωΔω)\frac{M{{L}^{2}}}{3}\omega =\frac{M}{3}{{(L+l)}^{2}}.(\omega -\Delta \omega ) L2ω=(L+L.α.t)2(ω.Δω){{L}^{2}}\omega ={{(L+L.\alpha .t)}^{2}}(\omega .-\Delta \omega ) L2ω=L2(1+α.t)2(ωΔω){{L}^{2}}\omega ={{L}^{2}}{{(1+\alpha .t)}^{2}}(\omega -\Delta \omega ) or ωΔωω=1(1+αt)2\frac{\omega -\Delta \omega }{\omega }=\frac{1}{{{(1+\alpha t)}^{2}}} 1Δωω=(1+αt)21-\frac{\Delta \omega }{\omega }={{(1+\alpha t)}^{-2}} Using binomial theorem (1+x)n{{(1+x)}^{-n}} =1nx+....=1-nx+.... (leaving higher power terms) 1Δωω=12αt1-\frac{\Delta \omega }{\omega }=1-2\alpha t Δωω=2αt\frac{\Delta \omega }{\omega }=2\alpha t Δω=2αtω\Delta \omega =2\alpha t\omega \therefore Change in angular speed =2αtω=2\alpha t\omega