Solveeit Logo

Question

Question: A uniform circular thin rod of weight w and radius 'r' is pivoted at point B and rest against a fric...

A uniform circular thin rod of weight w and radius 'r' is pivoted at point B and rest against a frictionless wall at 'A'. Reaction force of wall on circular rod is –

A

w

B

w/2

C

2wπ\frac { 2 \mathrm { w } } { \pi }

D

(π2π)w\left( \frac { \pi - 2 } { \pi } \right) \mathrm { w }

Answer

w/2

Explanation

Solution

Fr r = Iα

or μmg cos θ = 23Ma\frac { 2 } { 3 } \mathrm { Ma }

μmg cos θ = 23Mgsinθ1+(2/3)=μ=25tanθ\frac { 2 } { 3 } M \frac { g \sin \theta } { 1 + ( 2 / 3 ) } = \mu = \frac { 2 } { 5 } \tan \theta Shortcut

μ = (I/MR2)tanθ1+(I/MR2)=25tanθ\frac { \left( \mathrm { I } / \mathrm { MR } ^ { 2 } \right) \tan \theta } { 1 + \left( \mathrm { I } / \mathrm { MR } ^ { 2 } \right) } = \frac { 2 } { 5 } \tan \theta