Solveeit Logo

Question

Question: A uniform circular disc of radius 50cm at rest is free to turn about an axis which is perpendicular ...

A uniform circular disc of radius 50cm at rest is free to turn about an axis which is perpendicular to its plane and passes through its centre. It is subjected to a torque which produces a constant angular acceleration of 2.0rads22.0\,{\text{rad}} \cdot {{\text{s}}^{ - 2}}. Its net acceleration in ms2{\text{m}} \cdot {{\text{s}}^{ - 2}} at the end of 2.0s2.0\,{\text{s}} is approximately:
A. 8.0
B. 7.0
C. 6.0
D. 3.0

Explanation

Solution

Use the kinematic equation relating final angular velocity, initial angular velocity, angular acceleration and time to determine the final angular velocity of the disc at the end of 2.0s2.0\,{\text{s}}. Determine the linear centripetal and tangential acceleration and then resultant of these two accelerations.

Formulae used:
The kinematic equation relating final angular velocity ω\omega , initial angular velocity ω0{\omega _0}, angular acceleration α\alpha and time tt is
ω=ω0+αt\omega = {\omega _0} + \alpha t …… (1)
The centripetal acceleration aC{a_C} of an object is
aC=ω2R{a_C} = {\omega ^2}R …… (2)
Here, ω\omega is the angular velocity of the object and RR is the radius of the circular path.
The tangential acceleration at{a_t} of an object is
at=αR{a_t} = \alpha R …… (3)
Here, α\alpha is the angular acceleration of the object and RR is the radius of the circular path.

Complete step by step solution:
We have given that the radius of the disc is 50cm50\,{\text{cm}}.
R=50cmR = 50\,{\text{cm}}
The angular acceleration of the disc is 2.0rads22.0\,{\text{rad}} \cdot {{\text{s}}^{ - 2}}.
α=2.0rads2\alpha = 2.0\,{\text{rad}} \cdot {{\text{s}}^{ - 2}}
The initial angular velocity of the object is zero as it starts from rest.
ω0=0radss1{\omega _0} = 0\,{\text{rads}} \cdot {{\text{s}}^{ - 1}}
Let us determine the angular velocity of the disc at the end of 2.0s2.0\,{\text{s}} using equation (1).
Substitute 0radss10\,{\text{rads}} \cdot {{\text{s}}^{ - 1}} for ω0{\omega _0}, 2.0rads22.0\,{\text{rad}} \cdot {{\text{s}}^{ - 2}} for α\alpha and 2.0s2.0\,{\text{s}} for tt in equation (1).
ω=(0radss1)+(2.0rads2)(2.0s)\omega = \left( {0\,{\text{rads}} \cdot {{\text{s}}^{ - 1}}} \right) + \left( {2.0\,{\text{rad}} \cdot {{\text{s}}^{ - 2}}} \right)\left( {2.0\,{\text{s}}} \right)
ω=4rads1\Rightarrow \omega = 4\,{\text{rad}} \cdot {{\text{s}}^{ - 1}}

Hence, the angular velocity of the disc at the end of 2.0s2.0\,{\text{s}} is 4rads14\,{\text{rad}} \cdot {{\text{s}}^{ - 1}}.
Let us determine the centripetal acceleration of the disc.
Substitute 4rads14\,{\text{rad}} \cdot {{\text{s}}^{ - 1}} for ω\omega and 50cm50\,{\text{cm}} for RR in equation (2).
aC=(4rads1)2(50cm){a_C} = {\left( {4\,{\text{rad}} \cdot {{\text{s}}^{ - 1}}} \right)^2}\left( {50\,{\text{cm}}} \right)
aC=(4rads1)2[(50cm)(102m1cm)]\Rightarrow {a_C} = {\left( {4\,{\text{rad}} \cdot {{\text{s}}^{ - 1}}} \right)^2}\left[ {\left( {50\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)} \right]
aC=8m/s2\Rightarrow {a_C} = 8\,{\text{m/}}{{\text{s}}^2}
Let us determine the tangential acceleration of the disc.
Substitute 2.0rads22.0\,{\text{rad}} \cdot {{\text{s}}^{ - 2}} for α\alpha and 50cm50\,{\text{cm}} for RRin equation (3).
at=(2.0rads2)(50cm){a_t} = \left( {2.0\,{\text{rad}} \cdot {{\text{s}}^{ - 2}}} \right)\left( {50\,{\text{cm}}} \right)
at=(2.0rads2)[(50cm)(102m1cm)]\Rightarrow {a_t} = \left( {2.0\,{\text{rad}} \cdot {{\text{s}}^{ - 2}}} \right)\left[ {\left( {50\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)} \right]
at=1m/s2\Rightarrow {a_t} = 1\,{\text{m/}}{{\text{s}}^2}
The net linear acceleration of the disc is the resultant of the centripetal and tangential acceleration of the disc.
a=aC2+at2a = \sqrt {a_C^2 + a_t^2}
Substitute 8m/s28\,{\text{m/}}{{\text{s}}^2} for aC{a_C} and 1m/s21\,{\text{m/}}{{\text{s}}^2} for at{a_t} in the above equation.
a=(8m/s2)2+(1m/s2)2a = \sqrt {{{\left( {8\,{\text{m/}}{{\text{s}}^2}} \right)}^2} + {{\left( {1\,{\text{m/}}{{\text{s}}^2}} \right)}^2}}
a=64+1\Rightarrow a = \sqrt {64 + 1}
a=65\Rightarrow a = \sqrt {65}
a8ms2\therefore a \approx 8\,{\text{m}} \cdot {{\text{s}}^{ - 2}}

Therefore, the net acceleration of the disc is approximately 8ms28\,{\text{m}} \cdot {{\text{s}}^{ - 2}}.Hence, the correct option is A.

Note: The students may think that we have given the angular acceleration of the object and we need to determine the angular acceleration at the end of 2 seconds. But the student should read the question carefully because we have asked the net acceleration in meter per second square which is the unit of linear acceleration. So, we have to determine the linear acceleration at the end of 2 seconds.