Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A uniform bar of length 6 a and mass 8 m lies on a smooth horizontal table. Two point masses m and 2m moving in the same horizontal plane with speed 2vand v respectively, strike the bar [as shown in the figure] and stick to the bar after collision. Denoting angular velocity (about the centre of mass), total energy and centre of mass velocity by ??, E and vcv_c respectively, we have after collision

A

vc=0v_c=0

B

?=3v5a?=\frac{3v}{5a}

C

?=v5a?=\frac{v}{5a}

D

E=35mv2E=\frac{3}{5}mv^2

Answer

E=35mv2E=\frac{3}{5}mv^2

Explanation

Solution

Pi=0P_i=0
Pf=0\therefore P_f=0 or vc=0v_c=0
Li=Lfor(2mv)a+(2a)(2a)=I?L_i=L_f or (2mv)a+(2a)(2a)=I? ....(i)
Here, I=(8m)(6a)212+m(2a)2+(2m)(a)2=30ma2I=\frac{(8m)(6a)^2}{12}+m(2a)^2+(2m)(a)^2=30ma^2
Substituting in E (i), we get
?=v5a?=\frac{v}{5a}
Further, E=12I?2=12×(30ma2)(v5a)2=3mv25E=\frac{1}{2}I?^2=\frac{1}{2}\times(30ma^2)\bigg(\frac{v}{5a}\bigg)^2=\frac{3mv^2}{5}
\therefore Correct options are (a), (c) and (d).