Solveeit Logo

Question

Question: A triangle is so placed that the midpoints of its sides one placed on the co-ordinate axes, if a, b ...

A triangle is so placed that the midpoints of its sides one placed on the co-ordinate axes, if a, b and c are the sides of the triangle, then the equation of the triangle is xx1+yy1+zz1=1\frac{x}{x_1}+\frac{y}{y_1}+\frac{z}{z_1}=1 where a2+b2+c2=k(xi2+yi2+zi2)a^2+b^2+c^2=k(x_i^2+y_i^2+z_i^2), then the value of kk is ____.

Answer

8

Explanation

Solution

Let the vertices of the triangle be A(xA,yA,zA)A(x_A, y_A, z_A), B(xB,yB,zB)B(x_B, y_B, z_B), and C(xC,yC,zC)C(x_C, y_C, z_C).
Let the midpoints of the sides BCBC, CACA, and ABAB be DD, EE, and FF respectively.
According to the problem statement, these midpoints are placed on the coordinate axes.
Let DD be on the x-axis, EE on the y-axis, and FF on the z-axis.
Let their coordinates be D(x1,0,0)D(x_1, 0, 0), E(0,y1,0)E(0, y_1, 0), and F(0,0,z1)F(0, 0, z_1).
(Note: The problem uses x1,y1,z1x_1, y_1, z_1 in the equation of the plane, which are consistent with these midpoint coordinates.)

Using the midpoint formula:
For midpoint DD of BCBC:
D=(xB+xC2,yB+yC2,zB+zC2)=(x1,0,0)D = \left(\frac{x_B+x_C}{2}, \frac{y_B+y_C}{2}, \frac{z_B+z_C}{2}\right) = (x_1, 0, 0)
This gives us:

  1. xB+xC=2x1x_B+x_C = 2x_1
  2. yB+yC=0y_B+y_C = 0
  3. zB+zC=0z_B+z_C = 0

For midpoint EE of CACA:
E=(xC+xA2,yC+yA2,zC+zA2)=(0,y1,0)E = \left(\frac{x_C+x_A}{2}, \frac{y_C+y_A}{2}, \frac{z_C+z_A}{2}\right) = (0, y_1, 0)
This gives us:
4) xC+xA=0x_C+x_A = 0
5) yC+yA=2y1y_C+y_A = 2y_1
6) zC+zA=0z_C+z_A = 0

For midpoint FF of ABAB:
F=(xA+xB2,yA+yB2,zA+zB2)=(0,0,z1)F = \left(\frac{x_A+x_B}{2}, \frac{y_A+y_B}{2}, \frac{z_A+z_B}{2}\right) = (0, 0, z_1)
This gives us:
7) xA+xB=0x_A+x_B = 0
8) yA+yB=0y_A+y_B = 0
9) zA+zB=2z1z_A+z_B = 2z_1

Now, we solve for the coordinates of the vertices A,B,CA, B, C:

From (4), xC=xAx_C = -x_A.
From (7), xB=xAx_B = -x_A.
Substitute xB=xAx_B = -x_A and xC=xAx_C = -x_A into (1):
(xA)+(xA)=2x12xA=2x1xA=x1(-x_A) + (-x_A) = 2x_1 \Rightarrow -2x_A = 2x_1 \Rightarrow x_A = -x_1.
Then, xB=(x1)=x1x_B = -(-x_1) = x_1 and xC=(x1)=x1x_C = -(-x_1) = x_1.
So, xA=x1x_A = -x_1, xB=x1x_B = x_1, xC=x1x_C = x_1.

From (2), yC=yBy_C = -y_B.
From (8), yA=yBy_A = -y_B.
Substitute yC=yBy_C = -y_B and yA=yBy_A = -y_B into (5):
(yB)+(yB)=2y12yB=2y1yB=y1(-y_B) + (-y_B) = 2y_1 \Rightarrow -2y_B = 2y_1 \Rightarrow y_B = -y_1.
Then, yA=(y1)=y1y_A = -(-y_1) = y_1 and yC=(y1)=y1y_C = -(-y_1) = y_1.
So, yA=y1y_A = y_1, yB=y1y_B = -y_1, yC=y1y_C = y_1.

From (3), zC=zBz_C = -z_B.
From (6), zA=zCz_A = -z_C.
Substitute zC=zBz_C = -z_B and zA=zC=(zB)=zBz_A = -z_C = -(-z_B) = z_B into (9):
zB+zB=2z12zB=2z1zB=z1z_B + z_B = 2z_1 \Rightarrow 2z_B = 2z_1 \Rightarrow z_B = z_1.
Then, zA=z1z_A = z_1 and zC=z1z_C = -z_1.
So, zA=z1z_A = z_1, zB=z1z_B = z_1, zC=z1z_C = -z_1.

Thus, the coordinates of the vertices are:
A(x1,y1,z1)A(-x_1, y_1, z_1)
B(x1,y1,z1)B(x_1, -y_1, z_1)
C(x1,y1,z1)C(x_1, y_1, -z_1)

Now, we calculate the squares of the side lengths a,b,ca, b, c:
a2=BC2=(x1x1)2+(y1y1)2+(z1(z1))2a^2 = BC^2 = (x_1-x_1)^2 + (-y_1-y_1)^2 + (z_1-(-z_1))^2
a2=02+(2y1)2+(2z1)2=4y12+4z12a^2 = 0^2 + (-2y_1)^2 + (2z_1)^2 = 4y_1^2 + 4z_1^2

b2=CA2=(x1(x1))2+(y1y1)2+(z1z1)2b^2 = CA^2 = (x_1-(-x_1))^2 + (y_1-y_1)^2 + (-z_1-z_1)^2
b2=(2x1)2+02+(2z1)2=4x12+4z12b^2 = (2x_1)^2 + 0^2 + (-2z_1)^2 = 4x_1^2 + 4z_1^2

c2=AB2=(x1x1)2+(y1(y1))2+(z1z1)2c^2 = AB^2 = (-x_1-x_1)^2 + (y_1-(-y_1))^2 + (z_1-z_1)^2
c2=(2x1)2+(2y1)2+02=4x12+4y12c^2 = (-2x_1)^2 + (2y_1)^2 + 0^2 = 4x_1^2 + 4y_1^2

Now, sum a2+b2+c2a^2+b^2+c^2:
a2+b2+c2=(4y12+4z12)+(4x12+4z12)+(4x12+4y12)a^2+b^2+c^2 = (4y_1^2 + 4z_1^2) + (4x_1^2 + 4z_1^2) + (4x_1^2 + 4y_1^2)
a2+b2+c2=(4x12+4x12)+(4y12+4y12)+(4z12+4z12)a^2+b^2+c^2 = (4x_1^2+4x_1^2) + (4y_1^2+4y_1^2) + (4z_1^2+4z_1^2)
a2+b2+c2=8x12+8y12+8z12a^2+b^2+c^2 = 8x_1^2 + 8y_1^2 + 8z_1^2
a2+b2+c2=8(x12+y12+z12)a^2+b^2+c^2 = 8(x_1^2 + y_1^2 + z_1^2)

The problem states that a2+b2+c2=k(xi2+yi2+zi2)a^2+b^2+c^2=k(x_i^2+y_i^2+z_i^2).
Comparing our result with the given equation, we find that k=8k=8.
The equation of the triangle xx1+yy1+zz1=1\frac{x}{x_1}+\frac{y}{y_1}+\frac{z}{z_1}=1 represents the plane containing the triangle, and the points D(x1,0,0)D(x_1,0,0), E(0,y1,0)E(0,y_1,0), F(0,0,z1)F(0,0,z_1) are indeed the intercepts of this plane with the coordinate axes. Also, the vertices A,B,CA, B, C satisfy this plane equation.