Solveeit Logo

Question

Question: A triangle is inscribed in a circle of radius 1. The distance between the orthocentre and the circum...

A triangle is inscribed in a circle of radius 1. The distance between the orthocentre and the circumcentre of the triangle can not be

A

1

B

2

C

32\frac { 3 } { 2 }

D

4

Answer

4

Explanation

Solution

Let the vertices of the triangle be (cos qi, sin qi),

i = 1, 2, 3

Ž orthocentre is ((cosq1 + cos q2 + cos q3),

(sin q1 + sinq2 + sinq3))

Ž distance between the orthocentre and the circumcentre is

(cosθ1+cosθ2+cosθ3)2+(sinθ1+sinθ2+sinθ3)2\sqrt { \left( \cos \theta _ { 1 } + \cos \theta _ { 2 } + \cos \theta _ { 3 } \right) ^ { 2 } + \left( \sin \theta _ { 1 } + \sin \theta _ { 2 } + \sin \theta _ { 3 } \right) ^ { 2 } }

< 3.