Solveeit Logo

Question

Question: A triangle has vertices \[\left( {6,3} \right)\], \[\left( {5,8} \right)\] and \[\left( {3,2} \right...

A triangle has vertices (6,3)\left( {6,3} \right), (5,8)\left( {5,8} \right) and (3,2)\left( {3,2} \right). What is the area of a triangle's circumscribed circle?

Explanation

Solution

A circle circumscribing a triangle is a circle that passes through the vertices of a triangle. We know, the equation of a circle is given by (xh)2+(yk)2=r2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}, where (h,k)\left( {h,k} \right) is the centre of a circle where hh is the xx coordinate of the centre of circle and kk is the yy coordinate of the centre of circle. rr is the radius of the circle. Now, to solve this question, we will substitute the given points in the equation of the circle as they lie on the circle and then solve these equations to find the value of r,gr,g and hh. After finding the value of rr i.e. the radius of the circle, we will find the area of the circle using the formula: Area of the circle =πr2 = \pi {r^2}, where rr is the radius of the circle.

Complete step by step answer:
We are given three vertices of a triangle and we need to find the area of the circle circumscribing this triangle. Let us first draw the figure for the given question.

Here we see that the vertices of the triangle lie on the circle and so they will satisfy the equation of the circle. The given points are (6,3)\left( {6,3} \right), (5,8)\left( {5,8} \right) and (3,2)\left( {3,2} \right).

We know, the equation of a circle is given by
(xh)2+(yk)2=r2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}
where hh is the xx coordinate of the centre of circle and kk is the yy coordinate of the centre of the circle and rr is the radius of the circle.
Now, substituting the given points in the equation one by one.
First, substituting (6,3)\left( {6,3} \right) in (xh)2+(yk)2=r2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}, we get
(6h)2+(3k)2=r2\Rightarrow {\left( {6 - h} \right)^2} + {\left( {3 - k} \right)^2} = {r^2}
Now, using the identity (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, we get
((6)2+(h)22×6×h)+((3)2+(k)22×3×k)=r2\Rightarrow \left( {{{\left( 6 \right)}^2} + {{\left( h \right)}^2} - 2 \times 6 \times h} \right) + \left( {{{\left( 3 \right)}^2} + {{\left( k \right)}^2} - 2 \times 3 \times k} \right) = {r^2}
Now, solving the brackets, we get
(36+h212h)+(9+k26k)=r2\Rightarrow \left( {36 + {h^2} - 12h} \right) + \left( {9 + {k^2} - 6k} \right) = {r^2}
Opening the brackets, we get
36+h212h+9+k26k=r2\Rightarrow 36 + {h^2} - 12h + 9 + {k^2} - 6k = {r^2}

Adding the constant terms, we get
h212h+k26k+45=r2(1)\Rightarrow {h^2} - 12h + {k^2} - 6k + 45 = {r^2} - - - - - - (1)
Now, substituting (5,8)\left( {5,8} \right) in (xh)2+(yk)2=r2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}, we get
(5h)2+(8k)2=r2\Rightarrow {\left( {5 - h} \right)^2} + {\left( {8 - k} \right)^2} = {r^2}
Again, using the identity (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, we get
((5)2+(h)22×5×h)+((8)2+(k)22×8×k)=r2\Rightarrow \left( {{{\left( 5 \right)}^2} + {{\left( h \right)}^2} - 2 \times 5 \times h} \right) + \left( {{{\left( 8 \right)}^2} + {{\left( k \right)}^2} - 2 \times 8 \times k} \right) = {r^2}
Solving the brackets now,
(25+h210h)+(64+k216k)=r2\Rightarrow \left( {25 + {h^2} - 10h} \right) + \left( {64 + {k^2} - 16k} \right) = {r^2}
Now, opening the brackets, we get
25+h210h+64+k216k=r2\Rightarrow 25 + {h^2} - 10h + 64 + {k^2} - 16k = {r^2}

Now, adding the constant terms together,
h210h+k216k+89=r2(2)\Rightarrow {h^2} - 10h + {k^2} - 16k + 89 = {r^2} - - - - - - (2)
Now, substituting (3,2)\left( {3,2} \right) in (xh)2+(yk)2=r2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}, we get
(3h)2+(2k)2=r2\Rightarrow {\left( {3 - h} \right)^2} + {\left( {2 - k} \right)^2} = {r^2}
Using the identity (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, we get
((3)2+(h)22×3×h)+((2)2+(k)22×2×k)=r2\Rightarrow \left( {{{\left( 3 \right)}^2} + {{\left( h \right)}^2} - 2 \times 3 \times h} \right) + \left( {{{\left( 2 \right)}^2} + {{\left( k \right)}^2} - 2 \times 2 \times k} \right) = {r^2}
Now, solving the brackets, we get
(9+h26h)+(4+k24k)=r2\Rightarrow \left( {9 + {h^2} - 6h} \right) + \left( {4 + {k^2} - 4k} \right) = {r^2}
Opening the brackets, we get
9+h26h+4+k24k=r2\Rightarrow 9 + {h^2} - 6h + 4 + {k^2} - 4k = {r^2}

Now, adding the constant term together, we get
h26h+k24k+13=r2(3)\Rightarrow {h^2} - 6h + {k^2} - 4k + 13 = {r^2} - - - - - - (3)
Now, subtracting (2) from (3), we have
(h26h+k24k+13)(h210h+k216k+89)=r2r2\Rightarrow \left( {{h^2} - 6h + {k^2} - 4k + 13} \right) - \left( {{h^2} - 10h + {k^2} - 16k + 89} \right) = {r^2} - {r^2}
Opening brackets, we get
h26h+k24k+13h2+10hk2+16k89=r2r2\Rightarrow {h^2} - 6h + {k^2} - 4k + 13 - {h^2} + 10h - {k^2} + 16k - 89 = {r^2} - {r^2}
Collecting the like terms together and cancelling out some terms, we get
(10h6h)+(16k4k)+(1389)=0\Rightarrow \left( {10h - 6h} \right) + \left( {16k - 4k} \right) + \left( {13 - 89} \right) = 0
Now, solving the brackets, we get
4h+12k+(76)=0\Rightarrow 4h + 12k + \left( { - 76} \right) = 0
4h+12k76=0\Rightarrow 4h + 12k - 76 = 0

Dividing the whole equation by 44, we get
h+3k19=0(4)\Rightarrow h + 3k - 19 = 0 - - - - - - (4)
Now, subtracting (1) form (2), we get
(h210h+k216k+89)(h212h+k26k+45)=r2r2\Rightarrow \left( {{h^2} - 10h + {k^2} - 16k + 89} \right) - \left( {{h^2} - 12h + {k^2} - 6k + 45} \right) = {r^2} - {r^2}
Opening the brackets, we get
h210h+k216k+89h2+12hk2+6k45=r2r2\Rightarrow {h^2} - 10h + {k^2} - 16k + 89 - {h^2} + 12h - {k^2} + 6k - 45 = {r^2} - {r^2}
Now, collecting the like terms together and cancelling out some terms, we get
(12h10h)+(6k16k)+(8945)=0\Rightarrow \left( {12h - 10h} \right) + \left( {6k - 16k} \right) + \left( {89 - 45} \right) = 0
Solving the brackets, we get
2h+(10k)+44=0\Rightarrow 2h + \left( { - 10k} \right) + 44 = 0
2h10k+44=0\Rightarrow 2h - 10k + 44 = 0

Now, dividing the whole equation by 22, we get
h5k+22=0(5)\Rightarrow h - 5k + 22 = 0 - - - - - - - (5)
Now, subtracting (4) from (5), we have
(h5k+22)(h+3k19)=00\Rightarrow \left( {h - 5k + 22} \right) - \left( {h + 3k - 19} \right) = 0 - 0
Opening the brackets, we have
h5k+22h3k+19=00\Rightarrow h - 5k + 22 - h - 3k + 19 = 0 - 0
Cancelling out some terms and collecting the like terms together, we have
(5k3k)+(22+19)=00\Rightarrow \left( { - 5k - 3k} \right) + \left( {22 + 19} \right) = 0 - 0
Solving the brackets, we get
8k+41=0\Rightarrow - 8k + 41 = 0
Rearranging the terms, we get
8k=41\Rightarrow 8k = 41
k=418(6)\Rightarrow k = \dfrac{{41}}{8} - - - - - - (6)

Substituting k=418k = \dfrac{{41}}{8} in (5), we get
h5(418)+22=0\Rightarrow h - 5\left( {\dfrac{{41}}{8}} \right) + 22 = 0
h2058+22=0\Rightarrow h - \dfrac{{205}}{8} + 22 = 0
Shifting the constant term to the right hand side, we get
h=205822\Rightarrow h = \dfrac{{205}}{8} - 22
Taking LCM on the right hand side, we get
h=20522(8)8\Rightarrow h = \dfrac{{205 - 22\left( 8 \right)}}{8}
h=2051768\Rightarrow h = \dfrac{{205 - 176}}{8}
Now, solving the right hand side, we get
h=298(7)\Rightarrow h = \dfrac{{29}}{8} - - - - - - (7)
Substituting (6) and (7) in (2), we get
(298)210(298)+(418)216(418)+89=r2\Rightarrow {\left( {\dfrac{{29}}{8}} \right)^2} - 10\left( {\dfrac{{29}}{8}} \right) + {\left( {\dfrac{{41}}{8}} \right)^2} - 16\left( {\dfrac{{41}}{8}} \right) + 89 = {r^2}
Now, solving the brackets, we get
841642908+1681646568+89=r2\Rightarrow \dfrac{{841}}{{64}} - \dfrac{{290}}{8} + \dfrac{{1681}}{{64}} - \dfrac{{656}}{8} + 89 = {r^2}

Taking LCM, we get
841290(8)+1681656(8)+89(64)64=r2\Rightarrow \dfrac{{841 - 290\left( 8 \right) + 1681 - 656\left( 8 \right) + 89\left( {64} \right)}}{{64}} = {r^2}
8412320+16815248+569664=r2\Rightarrow \dfrac{{841 - 2320 + 1681 - 5248 + 5696}}{{64}} = {r^2}
Solving the numerator, we get
65064=r2\Rightarrow \dfrac{{650}}{{64}} = {r^2}
After simplifying, we get
32532=r2(8)\Rightarrow \dfrac{{325}}{{32}} = {r^2} - - - - - - (8)
Hence, we got the square of radius of the circle. i.e. r2{r^2}
Now, area of the circle is given by πr2\pi {r^2}
Using (8), we get
Area of the circle =πr2 = \pi {r^2}
\Rightarrow Area of the circle =π32532 = \pi \dfrac{{325}}{{32}}
\therefore Area of the circle =325π32 = \dfrac{{325\pi }}{{32}}

Hence, we got the area of the circle as 325π32\dfrac{{325\pi }}{{32}}.

Note: Alternatively, We could have used the formula r2=a2b2c216A2{r^2} = \dfrac{{{a^2}{b^2}{c^2}}}{{16{A^2}}}, where rr is the radius of the circumcircle, a,b,ca,b,c are the lengths of the sides of the triangle circumscribed in the circle and AA is the area of the triangle. We can find the length of the side of the triangle when two points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) are given by using the formula (x1x2)2+(y1y2)2\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} .