Question
Mathematics Question on Determinants
A triangle has its three sides equal to p, q and r. If the coordinates of its vertices are A(x1,y1), B(x2,y2) and C(x3,y3), then x1 x2 x3y1y2y32222 is equal to
(p+q+r)
(p+q−r)2
(p+q+r)(q+r−p)(r+p−q)(p+q−r)
(p−q+r)(q+r−p)(p+q−r)
(p+q+r)(q+r−p)(r+p−q)(p+q−r)
Solution
Let Δ be the area of triangle ABC. Then, Δ=21x1 x2 x3y1y2y3111 ⇒2Δ=x1 x2 x3y1y2y3111⇒4Δ=2x1 x2 x3y1y2y3111 ⇒4Δ=x1 x2 x3y1y2y3222⇒16Δ2=x1 x2 x3y1y2y32222…(i) We also know that the area of triangle ABC is given by Δ=s(s−p)(s−q)(s−r),wheres=21(p+q+r) But, s=21(p+q+r)⇒s−p=21(p+q+r)−p=21(q+r−p) Similarly, s−q=21(r+p−q)ands−r=21(p+q−r) ∴Δ2=21(p+q+r)⋅21(q+r−p)⋅21(r+p−q)⋅21(p+q−r) ⇒16Δ2=(p+q+r)(q+r−p)(r+p−q)(p+q−r)…(ii) From (i)and(ii), we get x1 x2 x3y1y2y32222=(p+q+r)(q+r−p)(r+p−q)(p+q−r)