Solveeit Logo

Question

Question: A travelling wave y = 5 sin\(\left( 20\text{ t}-50\text{ x} \right)\) is moving along the x axis in ...

A travelling wave y = 5 sin(20 t50 x)\left( 20\text{ t}-50\text{ x} \right) is moving along the x axis in a taut string (here x, y, t are in S.I. units). The speed of propagation in cm/sec\text{cm/sec} is .

Explanation

Solution

The given equation of travelling wave is
Y = 5 sin(20 t50 x)\left( 20\text{ t}-50\text{ x} \right)
When we compare it with the standard equation, the value of w and k can be calculated.
Now, as v=vλ=λT\text{v}=\text{v}\lambda \text{=}\dfrac{\lambda }{\text{T}} so by putting values of λ=[2πR]\lambda =\left[ \dfrac{2\pi }{\text{R}} \right] and T=[2πw]\text{T}=\left[ \dfrac{2\pi }{\text{w}} \right] , we get value of v.

Complete step by step solution:
Given equation is y = 5 sin(20 t50 x)\left( 20\text{ t}-50\text{ x} \right)
Comparing it with standard equation:
Y = r sin(w tk x)\left( \text{w t}-\text{k x} \right)
We get:
r = 5m\text{m}
w = 20
k = 50
Now, we know that
w=2πT\text{w}=\dfrac{2\pi }{\text{T}} Or T=2πw\text{T}=\dfrac{2\pi }{\text{w}} …….. (1)
And
k=!!π!!  !!λ!! \text{k=}\dfrac{\text{2 }\\!\\!\pi\\!\\!\text{ }}{\text{ }\\!\\!\lambda\\!\\!\text{ }} Or  !!λ!! =2πR\text{ }\\!\\!\lambda\\!\\!\text{ =}\dfrac{2\pi }{\text{R}} …… (2)
Also, v = V  !!λ!! \text{ }\\!\\!\lambda\\!\\!\text{ }
Putting values of  !!λ!! \text{ }\\!\\!\lambda\\!\\!\text{ }and T from equations (1) and (2), we get:
v=(2πk)(w2π) wk \begin{aligned} & \text{v}=\left( \dfrac{2\pi }{\text{k}} \right)\left( \dfrac{\text{w}}{2\pi } \right) \\\ & \Rightarrow \dfrac{\text{w}}{\text{k}} \\\ \end{aligned}
2050\Rightarrow \dfrac{20}{50}
v=25\Rightarrow \text{v}=\dfrac{2}{5}
04 m\Rightarrow 0\cdot 4\text{ m}
v=40 cm\therefore \text{v}=\text{40 cm}

Note: Travelling waves are observed when the wave is not confined to a given space along the medium. The most commonly observed travelling wave is an ocean wave. A travelling wave is described by the equation y(x, t)=r sin(w tk x)\text{y}\left( \text{x, t} \right)=\text{r sin}\left( \text{w t}-\text{k x} \right)
Where
r= amplitude of the wave
w = angular frequency =2πT=\dfrac{2\pi }{\text{T}}
k = wave number =2!!π!!  !!λ!! \text{=}\dfrac{\text{2}\\!\\!\pi\\!\\!\text{ }}{\text{ }\\!\\!\lambda\\!\\!\text{ }}