Solveeit Logo

Question

Question: A transverse wave of amplitude 0.5 m and wavelength 1 m and frequency 2 Hz is propagating in a strin...

A transverse wave of amplitude 0.5 m and wavelength 1 m and frequency 2 Hz is propagating in a string in the negative x-direction. The expression for this wave is

A

y(x,t)=0.5sin(2πx4πt)y(x,t) = 0.5\sin(2\pi x - 4\pi t)

B

y(x,t)=0.5cos(2πx+4πt)y(x,t) = 0.5\cos(2\pi x + 4\pi t)

C

y(x,t)=0.5sin(πx2πt)y(x,t) = 0.5\sin(\pi x - 2\pi t)

D

y(x,t)=0.5cos(2πx+2πt)y(x,t) = 0.5\cos(2\pi x + 2\pi t)

Answer

y(x,t)=0.5cos(2πx+4πt)y(x,t) = 0.5\cos(2\pi x + 4\pi t)

Explanation

Solution

\because y=acos(2πλvt+2πxλ)=0.5cos(4πt+2πx)y = a\cos\left( \frac{2\pi}{\lambda}vt + \frac{2\pi x}{\lambda} \right) = 0.5\cos(4\pi t + 2\pi x)