Solveeit Logo

Question

Question: A transverse wave is represented by the equation \(y = {y_0}\sin \dfrac{{2\pi }}{\lambda }\left( {vt...

A transverse wave is represented by the equation y=y0sin2πλ(vtx)y = {y_0}\sin \dfrac{{2\pi }}{\lambda }\left( {vt - x} \right). For what value of λ\lambda is the maximum particle velocity equal to two times of the wave velocity?
A. λ=2πy0\lambda = 2\pi {y_0}
B. λ=πy03\lambda = \dfrac{{\pi {y_0}}}{3}
C. λ=πy02\lambda = \dfrac{{\pi {y_0}}}{2}
D. λ=πy0\lambda = \pi {y_0}

Explanation

Solution

Hint: The equation in the question, given that the equation of the displacement of the particle in the wave (y)\left( y \right). By differentiating this equation with respect to the time tt, we get the value of the velocity of the particle (dydt)\left( {\dfrac{{dy}}{{dt}}} \right). By using that velocity, we can obtain the relation between the maximum velocity of the particle and the velocity of wave vv. Using that relation, the value of λ\lambda can be calculated.

Useful data:
In a transverse wave, the maximum velocity of the wave is two times the wave velocity.

Step by step solution:
Transverse waves:
The transverse waves are the waves which are in motion that have the oscillation of the wave is perpendicular or normal to the motion of the wave.
Vibration of string, sunlight are some examples of transverse waves.

Assume that,
The velocity of the wave is vv
The velocity of particle in the wave is dydt\dfrac{{dy}}{{dt}}
The maximum velocity of the particle in the wave is (dydt)max{\left( {\dfrac{{dy}}{{dt}}} \right)_{\max }}

Given equation,
y=y0sin2πλ(vtx)y = {y_0}\sin \dfrac{{2\pi }}{\lambda }\left( {vt - x} \right)
Differentiating the above equation with respect to the time tt, we get
dydt=y0cos2πλ(vtx)×2πλv  .......................................(1)\dfrac{{dy}}{{dt}} = {y_0}\cos \dfrac{{2\pi }}{\lambda }\left( {vt - x} \right) \times \dfrac{{2\pi }}{\lambda }v\;.......................................\left( 1 \right)

To obtain the maximum value of dydt\dfrac{{dy}}{{dt}}, the value of cos2πλ(vtx)\cos \dfrac{{2\pi }}{\lambda }\left( {vt - x} \right) must be 11.
So, assume that, the value of xx is vtvt and substitute the value of xx in equation (1),
(dydt)max=y0cos2πλ(vtvt)×2πλv   (dydt)max=y0cos2πλ(0)×2πλv   (dydt)max=y0cos0×2πλv  {\left( {\dfrac{{dy}}{{dt}}} \right)_{\max }} = {y_0}\cos \dfrac{{2\pi }}{\lambda }\left( {vt - vt} \right) \times \dfrac{{2\pi }}{\lambda }v\; \\\ {\left( {\dfrac{{dy}}{{dt}}} \right)_{\max }} = {y_0}\cos \dfrac{{2\pi }}{\lambda }\left( 0 \right) \times \dfrac{{2\pi }}{\lambda }v\; \\\ {\left( {\dfrac{{dy}}{{dt}}} \right)_{\max }} = {y_0}\cos 0 \times \dfrac{{2\pi }}{\lambda }v \\\
Since, cos0=1\cos 0 = 1
(dydt)max=y0(1)×2πλv (dydt)max=y0×2πλv  ..................................(2)  {\left( {\dfrac{{dy}}{{dt}}} \right)_{\max }} = {y_0}\left( 1 \right) \times \dfrac{{2\pi }}{\lambda }v \\\ {\left( {\dfrac{{dy}}{{dt}}} \right)_{\max }} = {y_0} \times \dfrac{{2\pi }}{\lambda }v\;..................................\left( 2 \right) \\\
From useful data, (dydt)max=2v{\left( {\dfrac{{dy}}{{dt}}} \right)_{\max }} = 2v, substitute in equation (2),
2v=y0×2πλv λ=y0×2π2vv λ=πy0  2v = {y_0} \times \dfrac{{2\pi }}{\lambda }v \\\ \lambda = {y_0} \times \dfrac{{2\pi }}{{2v}}v \\\ \lambda = \pi {y_0} \\\
Hence, the option (D) is correct.

Note: In the transverse wave, the maximum particle velocity should be twice the velocity of the wave. The given relation defines the displacement parameter of the particle. Hence by differentiating it with respect to time factor, the velocity of the particle will be obtained. Then, relating the maximum velocity of the particle to the wave velocity results in calculating the value of λ\lambda .