Solveeit Logo

Question

Physics Question on Waves

A transverse wave is represented by the equation y=y0sin2πλ(vtx)y=y_0 \sin\frac{2\pi}{\lambda}(vt-x) For what value of λ\lambda, is the maximum particle velocity equal to two times the wave velocity?

A

λ=πy02\lambda=\frac{\pi y_0}{2}

B

λ=πy03\lambda=\frac{\pi y_0}{3}

C

λ=2πy0\lambda=2\pi y_0

D

λ=πy0\lambda=\pi y_0

Answer

λ=πy0\lambda=\pi y_0

Explanation

Solution

The given equation of wave is
y=y0sin2πλ(vtx)y=y_0 \sin\frac{2\pi}{\lambda}(vt-x)
Particle velocity =dydt=y0cos2πλ(vtx).2πvλ=\frac{dy}{dt}=y_0 \cos\frac{2\pi}{\lambda}(vt-x).\frac{2\pi v}{\lambda}
(dydt)max=y0.2πλv.\Big(\frac{dy}{dt}\Big)_{max}=y_0.\frac{2\pi}{\lambda}v.
y0.2πλv=2v\therefore\, \, \, \, \, y_0.\frac{2\pi}{\lambda}v=2v or, λ=πy0.\lambda=\pi y_0.