Solveeit Logo

Question

Question: A transparent solid cylindrical rod has a refractive index of \(\frac { 2 } { \sqrt { 3 } }\). It is...

A transparent solid cylindrical rod has a refractive index of 23\frac { 2 } { \sqrt { 3 } }. It is surrounded by air. A light ray is incident at the midpoint of one end of the rod as shown in the figure.

The incident angle q for which the light ray grazes along the wall of the rod is -

A

sin1(12)\sin ^ { - 1 } \left( \frac { 1 } { 2 } \right)

B

sin1(32)\sin ^ { - 1 } \left( \frac { \sqrt { 3 } } { 2 } \right)

C

sin1(23)\sin ^ { - 1 } \left( \frac { 2 } { \sqrt { 3 } } \right)

D

sin1(13)\sin ^ { - 1 } \left( \frac { 1 } { \sqrt { 3 } } \right)

Answer

sin1(13)\sin ^ { - 1 } \left( \frac { 1 } { \sqrt { 3 } } \right)

Explanation

Solution

mair sin q = mcylider. sin (90 – qC)

Ž 1.sin q = 23\frac { 2 } { \sqrt { 3 } } .cosqC

Ž sin q = 23\frac { 2 } { \sqrt { 3 } }cos [sin11μcy]\left[ \sin ^ { - 1 } \frac { 1 } { \mu _ { \mathrm { cy } } } \right]

= 23cos[sin132]\frac { 2 } { \sqrt { 3 } } \cos \left[ \sin ^ { - 1 } \frac { \sqrt { 3 } } { 2 } \right]

= 23cos60\frac { 2 } { \sqrt { 3 } } \cos 60 ^ { \circ } = 13\frac { 1 } { \sqrt { 3 } }

Ž q = sin–1 13\frac { 1 } { \sqrt { 3 } } .