Solveeit Logo

Question

Physics Question on Semiconductor electronics: materials, devices and simple circuits

A transistor-oscillator using a resonant circuit with an inductor L (of negligible resistance) and a capacitor C in series produce oscillations of frequency f. If L is doubled and C is changed to 4C, the frequency will be :

A

f4\frac{\text{f}}{4}

B

8f

C

f22\frac{\text{f}}{2\sqrt 2}

D

2f

Answer

f22\frac{\text{f}}{2\sqrt 2}

Explanation

Solution

In a series LCLC circuit, frequency of LCLC oscillations is given by f=12πLCf=\frac{1}{2 \pi \sqrt{L C}} or f1LCf \propto \frac{1}{\sqrt{L C}} f1f2=L2C2L1C1\Rightarrow \frac{f_{1}}{f_{2}}=\sqrt{\frac{L_{2} C_{2}}{L_{1} C_{1}}}

Given L1=L,C1=C,L2=2L,C2=4C,f1=fL_{1}=L, C_{1}=C, L_{2}=2 L, C_{2}=4 C, f_{1}=f

ff2=2L×4CLC=8\therefore \frac{f}{f_{2}}=\sqrt{\frac{2 L \times 4 C}{L C}}=\sqrt{8} f2=f22\Rightarrow f_{2}=\frac{f}{2 \sqrt{2}}

Therefore, the correct option is (C): f22\frac{\text{f}}{2\sqrt 2}