Solveeit Logo

Question

Mathematics Question on Area of a Triangle - by Heron’s Formula

A traffic signal board, indicating ‘SCHOOL AHEAD’, is an equilateral triangle with side ‘a’. Find the area of the signal board, using Heron’s formula. If its perimeter is 180 cm, what will be the area of the signal board?

Answer

Side of traffic signal board = a
traffic signal board

Perimeter of the signal board = 3a = 180 cm

∴ a = 60 cm

Semi perimeter of the signal board (s) = 3a2\frac{3a}{2}

By using Heron’s formula,

Area of triangle =[s(s - a)(s - b)(s - c)]\sqrt{\text{[s(s - a)(s - b)(s - c)]}}
Area of given triangle
= [s(s - a)(s - b)(s - c)]\sqrt{\text{[s(s - a)(s - b)(s - c)]}}

=[s(s - a)(s - a)(s - a)] \sqrt{\text{[s(s - a)(s - a)(s - a)]}}

= (s - a)[s(s - a)]\text{(s - a)} \sqrt{\text{[s(s - a)]}}

since s = 3a2\frac{3a}{2}

(3a2a)3a2(3a2a)(\frac{3a}{2} - a)\sqrt{\frac{3a}{2}(\frac{3a}{2} - a)}

=(a2)3a2(a2)= (\frac{a}{2}) \sqrt{\frac{3a}{2}(\frac{a}{2})}

=a2×a2×3= \frac{a}{2} × \frac{a}{2} × \sqrt3

= (\frac{\sqrt3}{4})a^2$$ .......(1)

Area of the signal board = (34)a2 (\frac{\sqrt3}{4})a^2 sq. units
perimeter = 180 cm
side of triangle = 1803\frac{180}{3} cm
a = 60 cm

Area of the signal board = (34)(60)2 (\frac{\sqrt3}{4})(60)^2

= $$ (\frac{\sqrt3}{4})(3600)

=9003= 900\sqrt3
Area of the signal board =9003= 900\sqrt3 cm2