Solveeit Logo

Question

Question: A toxic gas with rotten egg-like smell, \({{\text{H}}_2}{\text{S}}\), is used for qualitative analys...

A toxic gas with rotten egg-like smell, H2S{{\text{H}}_2}{\text{S}}, is used for qualitative analysis. If the solubility of H2S{{\text{H}}_2}{\text{S}} in water at STP is 0.195 m. Calculate Henry’s law constant.

Explanation

Solution

Hint- Here, we will proceed by firstly finding out the number of moles of water and then, with the help of it we will calculate the number of moles of H2S{{\text{H}}_2}{\text{S}} gas. Then, we will apply Henry’s Law in order to find Henry’s law constant.

Complete answer:
Formulas Used- Number of moles of any substance = Mass of the substanceMolar mass of the substance\dfrac{{{\text{Mass of the substance}}}}{{{\text{Molar mass of the substance}}}}, XA=nAnA+nB {{\text{X}}_{\text{A}}} = \dfrac{{{{\text{n}}_{\text{A}}}}}{{{{\text{n}}_{\text{A}}} + {{\text{n}}_{\text{B}}}}}{\text{ }} and Pgas=KH×Xgas{{\text{P}}_{{\text{gas}}}} = {{\text{K}}_{\text{H}}} \times {{\text{X}}_{{\text{gas}}}}.
Given, Solubility of H2S{{\text{H}}_2}{\text{S}} in water at STP = 0.195 m
This means that 0.195 mol of H2S{{\text{H}}_2}{\text{S}} is dissolved in 1000 g of water
So, Number of moles of H2S{{\text{H}}_2}{\text{S}}, nH2S{{\text{n}}_{{{\text{H}}_2}{\text{S}}}} = 0.195 mol
Mass of water (H2O{{\text{H}}_2}{\text{O}}) = 1000 g
Also, Molar mass of H2O{{\text{H}}_2}{\text{O}} = 2(Atomic mass of H) + Atomic mass of O = 2(1) + 16 = 18 gmol1{\text{gmo}}{{\text{l}}^{ - 1}}
As we know that
Number of moles of any substance = Mass of the substanceMolar mass of the substance\dfrac{{{\text{Mass of the substance}}}}{{{\text{Molar mass of the substance}}}}
Using the above formula, we get
Number of moles of water (H2O{{\text{H}}_2}{\text{O}}), nH2O{{\text{n}}_{{{\text{H}}_2}{\text{O}}}} = Mass of H2OMolar mass of H2O\dfrac{{{\text{Mass of }}{{\text{H}}_2}{\text{O}}}}{{{\text{Molar mass of }}{{\text{H}}_2}{\text{O}}}}
By substituting the known values in the above equation, we get
.. Number of moles of water (H2O{{\text{H}}_2}{\text{O}}), nH2O{{\text{n}}_{{{\text{H}}_2}{\text{O}}}} = 100018=55.56\dfrac{{1000}}{{18}} = 55.56 mol
If a mixture contains two substances A and B having a number of moles as nA{{\text{n}}_{\text{A}}} and nB{{\text{n}}_{\text{B}}} respectively. Then, mole fraction of substance A is given by
XA=nAnA+nB (1){{\text{X}}_{\text{A}}} = \dfrac{{{{\text{n}}_{\text{A}}}}}{{{{\text{n}}_{\text{A}}} + {{\text{n}}_{\text{B}}}}}{\text{ }} \to {\text{(1)}}
Here, the mixture or solution consists of H2S{{\text{H}}_2}{\text{S}} and H2O{{\text{H}}_2}{\text{O}}. Using the formula given by equation (1), we have
Mole fraction of H2S{{\text{H}}_2}{\text{S}}, XH2S=nH2SnH2S+nH2O{{\text{X}}_{{{\text{H}}_2}{\text{S}}}} = \dfrac{{{{\text{n}}_{{{\text{H}}_2}{\text{S}}}}}}{{{{\text{n}}_{{{\text{H}}_2}{\text{S}}}} + {{\text{n}}_{{{\text{H}}_2}{\text{O}}}}}}
By substituting nH2S{{\text{n}}_{{{\text{H}}_2}{\text{S}}}} = 0.195 mol and nH2O{{\text{n}}_{{{\text{H}}_2}{\text{O}}}} = 55.56 mol in the above equation, we get
\Rightarrow Mole fraction of H2S{{\text{H}}_2}{\text{S}}, XH2S=0.1950.195+55.56=0.003497{{\text{X}}_{{{\text{H}}_2}{\text{S}}}} = \dfrac{{0.195}}{{0.195 + 55.56}} = 0.003497
At standard temperature pressure condition (STP),
Temperature = 273 K and Pressure = 0.987 atm
So, Partial pressure of H2S{{\text{H}}_2}{\text{S}} under equilibrium conditions, P = 0.987 atm
According to Henry’s Law,
Pgas=KH×Xgas (2){{\text{P}}_{{\text{gas}}}} = {{\text{K}}_{\text{H}}} \times {{\text{X}}_{{\text{gas}}}}{\text{ }} \to ({\text{2)}}
where Pgas{{\text{P}}_{{\text{gas}}}} denotes the partial pressure of a gas under equilibrium conditions, KH{{\text{K}}_{\text{H}}} denotes henry’s law constant and Xgas{{\text{X}}_{{\text{gas}}}} denotes the mole fraction of the gas
Using the formula given by equation (2) for H2S{{\text{H}}_2}{\text{S}}, we get
P=KH×XH2S KH=PXH2S KH=0.9870.003497=282.24 atm  {\text{P}} = {{\text{K}}_{\text{H}}} \times {{\text{X}}_{{{\text{H}}_2}{\text{S}}}} \\\ \Rightarrow {{\text{K}}_{\text{H}}} = \dfrac{{\text{P}}}{{{{\text{X}}_{{{\text{H}}_2}{\text{S}}}}}} \\\ \Rightarrow {{\text{K}}_{\text{H}}} = \dfrac{{{\text{0}}{\text{.987}}}}{{0.003497}} = 282.24{\text{ atm}} \\\

Therefore, Henry's law constant for the given problem is equal to 282.24 atm (atmospheric pressure).

Note- Since, solubility refers to the maximum amount of solute (in moles) that can dissolve in a known quantity of solvent (in gram) at a certain temperature. In this particular problem, taking H2S{{\text{H}}_2}{\text{S}} as solute and water as solvent. From here, we have said that solubility of H2S{{\text{H}}_2}{\text{S}} in water at STP is 0.195 m means that 0.195 mol of H2S{{\text{H}}_2}{\text{S}} is dissolved in 1000 g of water.