Question
Question: A tower subtends angles \(\alpha , 2 \alpha , 3 \alpha\)respectively at points A, B and C, all lying...
A tower subtends angles α,2α,3αrespectively at points A, B and C, all lying on a horizontal line through the foot of the tower. Then BCAB=
A
sin2αsin3α
B
1+2cos2α
C
2+cos3α
D
sinαsin2α
Answer
1+2cos2α
Explanation
Solution
From sine rule
⇒ sin(180∘−3α)BE=sinαBC
⇒ sin3αAB=sinαBC (Since BE = AB)
⇒ BCAB=sinαsin3α=3−4sin2α
⇒BCAB= 3−2(1−cos2α)⇒BCAB=1+2cos2α
