Solveeit Logo

Question

Question: A tower of height b subtends an angle at a point O on the level of the foot of the tower and at a di...

A tower of height b subtends an angle at a point O on the level of the foot of the tower and at a distance a from the foot of the tower. If a pole mounted on the tower also subtends an equal angle at O, the height of the pole is.

A

b(a2b2a2+b2)b \left( \frac { a ^ { 2 } - b ^ { 2 } } { a ^ { 2 } + b ^ { 2 } } \right)

B

b(a2+b2a2b2)b \left( \frac { a ^ { 2 } + b ^ { 2 } } { a ^ { 2 } - b ^ { 2 } } \right)

C

a(a2b2a2+b2)a \left( \frac { a ^ { 2 } - b ^ { 2 } } { a ^ { 2 } + b ^ { 2 } } \right)

D

a(a2+b2a2b2)a \left( \frac { a ^ { 2 } + b ^ { 2 } } { a ^ { 2 } - b ^ { 2 } } \right)

Answer

b(a2+b2a2b2)b \left( \frac { a ^ { 2 } + b ^ { 2 } } { a ^ { 2 } - b ^ { 2 } } \right)

Explanation

Solution

Let AB is tower and AC is pole of height h.

From ABO,ba=tanα\triangle A B O , \frac { b } { a } = \tan \alpha ......(i)

From b+ha=2tanα1tan2α\frac { b + h } { a } = \frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha }

or b+h=2aba1b2a2b + h = \frac { 2 a \frac { b } { a } } { 1 - \frac { b ^ { 2 } } { a ^ { 2 } } } (Put value of tanα\tan \alpha from (i))

or h=b(a2+b2)a2b2h = \frac { b \left( a ^ { 2 } + b ^ { 2 } \right) } { a ^ { 2 } - b ^ { 2 } }.

Remember the result h=b(a2+b2)a2b2h = \frac { b \left( a ^ { 2 } + b ^ { 2 } \right) } { a ^ { 2 } - b ^ { 2 } } in which b=b = height of tower, h=h = height of pole, a = distance of observation point from the tower