Solveeit Logo

Question

Question: A total charge q passes through a coil of resistance R. Let H be the amount of heat generated in the...

A total charge q passes through a coil of resistance R. Let H be the amount of heat generated in the coil. Choose the correct statement (s).

A

H=2q2R3t0H = \frac{2q^2R}{3t_0} if current decreases uniformly to zero during a time interval t0t_0

B

H=4q2R3t0H = \frac{4q^2R}{3t_0} if current decreases uniformly to zero during a time interval t0t_0

C

H=q2Rt0H = \frac{q^2R}{t_0} if the current decreases smoothly down to zero halving its values every t0t_0 seconds

D

H=q2Rln(2)2t0H = \frac{q^2Rln(2)}{2t_0} if the current decreases smoothly down to zero halving its value every t0t_0 seconds

Answer

H = \frac{4q^2R}{3t_0} if current decreases uniformly to zero during a time interval t_0, H = \frac{q^2Rln(2)}{2t_0} if the current decreases smoothly down to zero halving its value every t_0 seconds

Explanation

Solution

Let i(t)i(t) be the current flowing through the coil of resistance RR at time tt. The heat generated in the coil is given by H=Ri(t)2dtH = \int R i(t)^2 dt. The total charge that passes through the coil is given by q=i(t)dtq = \int i(t) dt.

Scenario 1: Current decreases uniformly to zero during a time interval t0t_0.

Let the initial current at t=0t=0 be i0i_0. Since the current decreases uniformly to zero in time t0t_0, the current as a function of time is given by a linear equation: i(t)=i0(1tt0)i(t) = i_0 \left(1 - \frac{t}{t_0}\right) for 0tt00 \le t \le t_0.

The total charge qq is the area under the i(t)i(t) vs tt graph from t=0t=0 to t=t0t=t_0. This is a triangle with base t0t_0 and height i0i_0. q=12×t0×i0q = \frac{1}{2} \times t_0 \times i_0. Thus, the initial current is i0=2qt0i_0 = \frac{2q}{t_0}. Substituting this into the expression for i(t)i(t): i(t)=2qt0(1tt0)i(t) = \frac{2q}{t_0} \left(1 - \frac{t}{t_0}\right). The heat generated is H=0t0Ri(t)2dtH = \int_0^{t_0} R i(t)^2 dt. H=0t0R[2qt0(1tt0)]2dt=R4q2t020t0(1tt0)2dtH = \int_0^{t_0} R \left[\frac{2q}{t_0} \left(1 - \frac{t}{t_0}\right)\right]^2 dt = R \frac{4q^2}{t_0^2} \int_0^{t_0} \left(1 - \frac{t}{t_0}\right)^2 dt.

Let u=1tt0u = 1 - \frac{t}{t_0}, so du=1t0dtdu = -\frac{1}{t_0} dt, which means dt=t0dudt = -t_0 du. When t=0t=0, u=1u=1. When t=t0t=t_0, u=0u=0. The integral becomes 10u2(t0du)=t010u2du=t001u2du\int_1^0 u^2 (-t_0 du) = -t_0 \int_1^0 u^2 du = t_0 \int_0^1 u^2 du. 01u2du=[u33]01=13\int_0^1 u^2 du = \left[\frac{u^3}{3}\right]_0^1 = \frac{1}{3}. So, 0t0(1tt0)2dt=t0×13=t03\int_0^{t_0} \left(1 - \frac{t}{t_0}\right)^2 dt = t_0 \times \frac{1}{3} = \frac{t_0}{3}. H=R4q2t02×t03=4q2R3t0H = R \frac{4q^2}{t_0^2} \times \frac{t_0}{3} = \frac{4q^2 R}{3t_0}.

Scenario 2: Current decreases smoothly down to zero halving its value every t0t_0 seconds.

This implies an exponential decay of the form i(t)=i0ekti(t) = i_0 e^{-kt}. The condition "halving its value every t0t_0 seconds" means i(t+t0)=12i(t)i(t+t_0) = \frac{1}{2} i(t). i0ek(t+t0)=12i0ekti_0 e^{-k(t+t_0)} = \frac{1}{2} i_0 e^{-kt} ektekt0=12ekte^{-kt} e^{-kt_0} = \frac{1}{2} e^{-kt} ekt0=12e^{-kt_0} = \frac{1}{2} kt0=ln(12)=ln(2)-kt_0 = \ln\left(\frac{1}{2}\right) = -\ln(2) k=ln(2)t0k = \frac{\ln(2)}{t_0}. The current is i(t)=i0eln(2)t0ti(t) = i_0 e^{-\frac{\ln(2)}{t_0} t}. The current approaches zero as tt \to \infty. The total charge qq is the integral of the current from t=0t=0 to t=t=\infty. q=0i0eln(2)t0tdt=i00eln(2)t0tdtq = \int_0^{\infty} i_0 e^{-\frac{\ln(2)}{t_0} t} dt = i_0 \int_0^{\infty} e^{-\frac{\ln(2)}{t_0} t} dt. Let α=ln(2)t0\alpha = \frac{\ln(2)}{t_0}. The integral is 0eαtdt=[1αeαt]0=0(1α×1)=1α\int_0^{\infty} e^{-\alpha t} dt = \left[-\frac{1}{\alpha} e^{-\alpha t}\right]_0^{\infty} = 0 - \left(-\frac{1}{\alpha} \times 1\right) = \frac{1}{\alpha}. q=i0×1ln(2)t0=i0t0ln(2)q = i_0 \times \frac{1}{\frac{\ln(2)}{t_0}} = i_0 \frac{t_0}{\ln(2)}. So, the initial current is i0=qln(2)t0i_0 = \frac{q \ln(2)}{t_0}. The current is i(t)=qln(2)t0eln(2)t0ti(t) = \frac{q \ln(2)}{t_0} e^{-\frac{\ln(2)}{t_0} t}. The heat generated is H=0Ri(t)2dtH = \int_0^{\infty} R i(t)^2 dt. H=0R[qln(2)t0eln(2)t0t]2dt=Rq2(ln(2))2t020e2ln(2)t0tdtH = \int_0^{\infty} R \left[\frac{q \ln(2)}{t_0} e^{-\frac{\ln(2)}{t_0} t}\right]^2 dt = R \frac{q^2 (\ln(2))^2}{t_0^2} \int_0^{\infty} e^{-2\frac{\ln(2)}{t_0} t} dt. Let β=2ln(2)t0\beta = 2\frac{\ln(2)}{t_0}. The integral is 0eβtdt=1β\int_0^{\infty} e^{-\beta t} dt = \frac{1}{\beta}. 0e2ln(2)t0tdt=12ln(2)t0=t02ln(2)\int_0^{\infty} e^{-2\frac{\ln(2)}{t_0} t} dt = \frac{1}{2\frac{\ln(2)}{t_0}} = \frac{t_0}{2\ln(2)}. H=Rq2(ln(2))2t02×t02ln(2)=q2(ln(2))R2t0H = R \frac{q^2 (\ln(2))^2}{t_0^2} \times \frac{t_0}{2\ln(2)} = \frac{q^2 (\ln(2)) R}{2t_0}.

The correct statements are the ones corresponding to option 2 and option 4.