Solveeit Logo

Question

Question: A total charge *Q* is broken in two parts \(Q_{1}\) and \(Q_{2}\)and they are placed at a distance *...

A total charge Q is broken in two parts Q1Q_{1} and Q2Q_{2}and they are placed at a distance R from each other. The maximum force of repulsion between them will occur, when

A

Q2=QR,Q1=QQR\mathbf{Q}_{\mathbf{2}}\mathbf{=}\frac{\mathbf{Q}}{\mathbf{R}}\mathbf{,}\mathbf{Q}_{\mathbf{1}}\mathbf{= Q -}\frac{\mathbf{Q}}{\mathbf{R}}

B

Q2=Q4,Q1=Q2Q3\mathbf{Q}_{\mathbf{2}}\mathbf{=}\frac{\mathbf{Q}}{\mathbf{4}}\mathbf{,}\mathbf{Q}_{\mathbf{1}}\mathbf{= Q}\mathbf{-}\frac{\mathbf{2Q}}{\mathbf{3}}

C

Q2=Q4,Q1=3Q4\mathbf{Q}_{\mathbf{2}}\mathbf{=}\frac{\mathbf{Q}}{\mathbf{4}}\mathbf{,}\mathbf{Q}_{\mathbf{1}}\mathbf{=}\frac{\mathbf{3Q}}{\mathbf{4}}

D

Q1=Q2,Q2=Q2\mathbf{Q}_{\mathbf{1}}\mathbf{=}\frac{\mathbf{Q}}{\mathbf{2}}\mathbf{,}\mathbf{Q}_{\mathbf{2}}\mathbf{=}\frac{\mathbf{Q}}{\mathbf{2}}

Answer

Q1=Q2,Q2=Q2\mathbf{Q}_{\mathbf{1}}\mathbf{=}\frac{\mathbf{Q}}{\mathbf{2}}\mathbf{,}\mathbf{Q}_{\mathbf{2}}\mathbf{=}\frac{\mathbf{Q}}{\mathbf{2}}

Explanation

Solution

Force between charges Q1Q_{1} andQ2Q_{2}

F=kQ1Q2R2=kQ1(QQ1)R2F = k\frac{Q_{1}Q_{2}}{R^{2}} = k\frac{Q_{1}\left( Q - Q_{1} \right)}{R^{2}}

For F to be maximum, dFdQ1=0\frac{dF}{dQ_{1}} = 0 i.e.,

ddQ1{k(Q1QQ12)R2}=0\frac{d}{dQ_{1}}\left\{ k\frac{\left( Q_{1}Q - Q_{1}^{2} \right)}{R^{2}} \right\} = 0 or Q2Q1=0,Q1=Q2Q - 2Q_{1} = 0,Q_{1} = \frac{Q}{2}

Hence Q1=Q2=Q2Q_{1} = Q_{2} = \frac{Q}{2}