Solveeit Logo

Question

Physics Question on torque

A torque of 105Nm{{10}^{-5}}Nm is required to hold a magnet at 9090{}^\circ with the horizontal component of the earths magnetic field. The torque required to hold it at 3030{}^\circ will be

A

5×106Nm5\times {{10}^{-6}}Nm

B

12×105Nm\frac{1}{2}\times {{10}^{-5}}Nm

C

53×106Nm5\sqrt{3}\times {{10}^{-6}}Nm

D

Data is insufficient

Answer

5×106Nm5\times {{10}^{-6}}Nm

Explanation

Solution

The magnet in a magnetic field experiences a torque which rotates the magnet to a position in which the axis of the magnet is parallel to the field.
τ=MB sinθ\tau =MB\text{ }sin\,\theta
where, MM is magnetic dipole moment, BB the magnetic field and θ\theta the angle between the two.
Given, τ1=105Nm,θ1=90,θ2=30,{{\tau }_{1}}={{10}^{-5}}Nm,{{\theta }_{1}}=90{}^\circ ,{{\theta }_{2}}=30{}^\circ ,
τ1=MBsin90{{\tau }_{1}}=MB\sin 90{}^\circ ...(i)
τ2=MBsin30{{\tau }_{2}}=MB\sin 30{}^\circ ...(ii)
Dividing E (i) by E i(ii), we get
τ1τ2=105τ2=11/2\frac{{{\tau }_{1}}}{{{\tau }_{2}}}=\frac{{{10}^{-5}}}{{{\tau }_{2}}}=\frac{1}{1/2}
\Rightarrow τ2=1052{{\tau }_{2}}=\frac{{{10}^{-5}}}{2}
=102×106=\frac{10}{2}\times {{10}^{-6}}
=5×106Nm=5\times {{10}^{-6}}Nm