Question
Question: A tin can has a volume of \[1000{\rm{ c}}{{\rm{m}}^3}\] and a mass of \[100{\rm{ g}}\]. What mass of...
A tin can has a volume of 1000cm3 and a mass of 100g. What mass of lead shot can it carry without sinking in water (ρ=1000kg/kgm3m3)?
A. 900g
B. 100g
C. 1000g
D. 1100g
Solution
We will be using the Archimedes principle which states that a body will be floating in a liquid till its density is less than the density of the liquid in which body is floating.
Complete step by step solution:
Volume of the tin can is VT=1000cm3.
Mass of the tin can is MT=100g.
Density of water is ρ=1000kg/kgm3m3.
From the statement of Archimedes principle we can say that the volume of tin floating on the water must be equal to the volume of the water displaced by the tin.
Volume of the water displaced by the tin.
VW=1000cm3
The expression for the weight of water displaced by the tin can.
WW=ρ⋅VW⋅g……(1)
Substitute 1000cm3 for VW, 10m/ms2s2 for g and 1000kg/kgm3m3 for ρ in equation (1).
MW=(1000kg/kgm3m3)(1000cm3)(10m/ms2s2) =(1000kg/kgm3m3)(1000cm3×106cm3m3)(10m/ms2s2) =10kg⋅m/ms2s2 =10N
Weight of the tin is equal to the product of the mass of tin and volume of the tin.
WT=MT⋅g
Substitute 10m/ms2s2 for g and 100g for MT in the above equation.
WT=(100g×1000gkg)(10m/ms2s2) =1kg⋅m/⋅ms2s2 =1N
By analogy, we say that the upward force applied by the water is compensated by downward force of tin and force due to the lead shot acting vertically.
Upward force = Tin's weight + Load of the lead shot
Load of the lead shot = Upward force - Tin's weight ……(2)
This upward force applied by the water on the tin can is equal to the weight of the water displaced.
Substitute 10Nfor upward force and 1N in equation (2).
Load of the lead shot=10 N- 1 N
=9N
Write the expression for mass of the lead shot that can be carried by the can without sinking.
ML = Load of the leadshot/g
Substitute 9N for load of the lead shot in the above equation.
ML=10m/ms2s29N =10m/ms2s29N×Nkg⋅m/⋅ms2s2 =109kg×kg1000g =900g
Therefore, the mass of lead shot that can be carried by the tin can is 900g.
So, the correct answer is “Option A”.
Note:
After calculating mass do not forget to multiply it with the acceleration due to gravity to get the value of weight. We can remember the conversion of Newton into its base units (kg, m, s) so that low homogeneity of units is followed.The volume of tin floating on the water must be equal to the volume of the water displaced by the tin.