Solveeit Logo

Question

Question: A time varying \(P=2t\) is applied on a particle of mass m. Find average power over a time interval ...

A time varying P=2tP=2t is applied on a particle of mass m. Find average power over a time interval from t=0 to t=t:
A.Pav=t{ P }_{ av }=t
B. Pav=2t{ P }_{ av }=2t
C. Pav=4t{ P }_{ av }=4t
D. Pav=8t{ P }_{ av }=8t

Explanation

Solution

Use the formula for average power over a time interval. Substitute the values given in the question. And then integrate it. The answer obtained is average power over a time interval.

Complete answer:
Given: Power P= 2t
Average power over a time interval from t=0 to t=t is given by,
Pavg=0tPdt0tdt{ P }_{ avg }=\dfrac { \int _{ 0 }^{ t }{ P } dt }{ \int _{ 0 }^{ t }{ dt } }
Substituting the value above we get,
Pavg=0t2tdt0tt{ P }_{ avg }=\dfrac { \int _{ 0 }^{ t }{ 2t } dt }{ \int _{ 0 }^{ t }{ t } }
Integrating the above expression, we get,
Pavg=[2t22]0tt{ P }_{ avg }=\dfrac { { { \left[ \dfrac { 2{ t }^{ 2 } }{ 2 } \right] }_{ 0 }^{ t } } }{ t }
Pavg=t2t\therefore{ P }_{ avg }=\dfrac { { { t }^{ 2 } } }{ t }
Pavg=t\therefore{ P }_{ avg }=t
Therefore, the average power over a time interval from t=0 to t=t is t.

Hence, the correct answer is option A i.e. Pav=t{ P }_{ av }=t.

Note:
The average power in a short interval of time at a particular instant is called Instantaneous Power. Formula for average power is also given by,
Pavg=δWδt{ P }_{ avg }=\dfrac{\delta W}{\delta t}
Where, δW\delta W is the amount of work done during a time period of δt\delta t.