Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A thin uniform bar of length LL and mass 8m8m lies on a smooth horizontal table. Two point masses mm and 2m2m are moving in the same horizontal plane from opposite sides of the bar with speeds 2v2v and vv respectively. The masses stick to the bar after collision at a distance L3\frac{L}{3} and L6\frac{L}{6} respectively from the centre of the bar. If the bar starts rotating about its center of mass as a result of collision, the angular speed of the bar will be :

A

v5L\frac{v}{5L}

B

6v5L\frac{6 v}{5L}

C

3v5L\frac{3 v}{5L}

D

v6L\frac{ v}{6L}

Answer

6v5L\frac{6 v}{5L}

Explanation

Solution

Centre of mass after the collision will be at OO. Therefore, 2mL6=mL32 m \frac{L}{6}=m \frac{L}{3}
Now, using conservation of angular momentum, we get 2mL6×v+mL3×2v=Iω\quad 2 m \frac{L}{6} \times v+m \frac{L}{3} \times 2 v=I \omega
Therefore, 2mL6×v+mL3×2v=[8mL212+2m(L6)2+m(L3)2]ω2 m \frac{L}{6} \times v+m \frac{L}{3} \times 2 v =\left[8 m \frac{L^{2}}{12}+2 m\left(\frac{L}{6}\right)^{2}+m\left(\frac{L}{3}\right)^{2}\right] \omega
(L6+13)2mv=[8mL212+2mL236+mL29]ω\Rightarrow\left(\frac{L}{6}+\frac{1}{3}\right) 2 m v =\left[8 m \frac{L^{2}}{12}+\frac{2 m L^{2}}{36}+\frac{m L^{2}}{9}\right] \omega
3L6×2mV=56mL2ω\Rightarrow \frac{3 L}{6} \times 2 m V=\frac{5}{6} m L^{2} \omega
Lmv=56mL2ω\Rightarrow L m v =\frac{5}{6} m L^{2} \omega
ω=6Lmv5mL2\Rightarrow \omega=\frac{6 L m v}{5 m L^{2}}
ω=65vL\Rightarrow \omega=\frac{6}{5} \frac{v}{L}