Solveeit Logo

Question

Physics Question on Gravitation

A thin uniform annular disc (see figure) of mass MM has outer radius 4R4R and inner radius 3R3R. The work required to take a unit mass from point PP on its axis to infinity is

A

2GM7R(425)\frac{2GM}{7R}(4 \sqrt 2 - 5 )

B

2GM7R(425) -\frac{2GM}{7R}(4 \sqrt 2 - 5 )

C

GM4R\frac{GM}{4R}

D

2GM5R(21)\frac{2GM}{5R}( \sqrt 2 - 1)

Answer

2GM7R(425)\frac{2GM}{7R}(4 \sqrt 2 - 5 )

Explanation

Solution

W=ΔU=UfUi=UUP=UP=mVPW =\Delta U = U_f -U_i =U_{\infty} -U_P = -U_P =- m V_P
=VP(asm=1)\, \, \, \, \, \, \, \, \, \, \, = - V_P \, \, \, \, \, \, \, \, \, \, \, \, \, \, (as m=1)
Potential at point P will be obtained by integration as given below.
Let dM be the mass of small ring as shown
dM=Mπ(4R)2π(3R)2(2πr)dr=2Mrdr7R2dM = \frac{ M}{ \pi (4 R) ^2 - \pi (3R)^2} (2 \pi r ) dr = \frac{2Mr dr }{ 7 R^2}
dVP=GdM16R2+r2=2GM7R23R4Rr16R2+r2drdV_P = - \frac{G dM}{\sqrt{16 R^2 +r^2}} = - \frac{ 2GM}{ 7 R^2} \int \limits_{3R}^{4R} \frac{r}{ \sqrt{16 R^2 +r^2 }} dr
=2GM7R(425)= - \frac{2GM}{ 7R} (4 \sqrt 2 -5 )
W=+2GM7R(425)\therefore \, \, \, \, \, \, \, W = + \frac{ 2GM}{7R} (4 \sqrt 2 - 5 )
\therefore \, \, \, \, \, Correct option is (a).