Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A thin rod of mass mm and length 2l2l is made to rotate about an axis passing through its centre and perpendicular to it. If its angular velocity changes from 00 to ω\omega in time tt, the torque acting on it is

A

ml2ω12t\frac{ml^2 \omega}{12 t}

B

ml2ω3t\frac{ml^2 \omega}{3 t}

C

ml2ωt\frac{ml^2 \omega}{t}

D

4ml2ω3t\frac{4ml^2 \omega}{3 t}

Answer

ml2ω3t\frac{ml^2 \omega}{3 t}

Explanation

Solution

since τ=lα\tau=l \alpha so,τ=[m(2l)212](ωt)orτ=m×4l2×ω12×t\tau=\left[\frac{m(2l)^2}{12}\right]\left(\frac{\omega}{t}\right) \,or\,\tau =\frac{m \times 4 l^2 \times \omega }{12 \times t} or τ=4ml2ω12t=(ml2ω3t)\tau=\frac{4ml^2 \omega}{12t}=\left(\frac{ml^2\omega}{3t}\right)