Solveeit Logo

Question

Question: A thin rod of length *f* / 3 lies along the axis of a concave mirror of focal length *f*. One end of...

A thin rod of length f / 3 lies along the axis of a concave mirror of focal length f. One end of its magnified image touches an end of the rod. The length of the image is

A

f

B

12f\frac { 1 } { 2 } f

C

2 f

D

14f\frac { 1 } { 4 } f

Answer

12f\frac { 1 } { 2 } f

Explanation

Solution

If end A of rod acts an object for mirror then it's image will be A' and if u=2ff3=5f3u = 2 f - \frac { f } { 3 } = \frac { 5 f } { 3 }

So by using 1f=1v+15f3\Rightarrow \frac { 1 } { - f } = \frac { 1 } { v } + \frac { 1 } { \frac { - 5 f } { 3 } } v=52f\Rightarrow v = - \frac { 5 } { 2 } f

=52f2f=f2= \frac { 5 } { 2 } f - 2 f = \frac { f } { 2 }