Solveeit Logo

Question

Physics Question on Moment Of Inertia

A thin rod of length 4l4l, mass 4m4\, m is bent at the points as shown in figure. What is the moment of inertia of the rod about the axis passing point OO and perpendicular to the plane of the paper?

A

ml23\frac{ml^2}{3}

B

10ml23 \frac{10ml^2}{3}

C

ml212 \frac{ml^2}{12}

D

ml224\frac{ml^2}{24}

Answer

10ml23 \frac{10ml^2}{3}

Explanation

Solution

Total moment of inertia =l1+l2+l3+l4=2l1+2l2=l_{1}+l_{2}+l_{3}+l_{4}=2 l_{1}+2 l_{2} =2(l1+l2)[l3=l1,l1l1=l4]=2\left(l_{1}+l_{2}\right)\left[l_{3}=l_{1}, l_{1} l_{1}=l_{4}\right] Now l2=l3=ml23l_{2}=l_{3}=\frac{ml^{2}}{3} Using parallel axes theorem, we have l=lcm+mx2l=l_{cm}+m x^{2} and x=l2+l24x=\sqrt{l^{2}+\frac{l^{2}}{4}} l1=l4=ml212+M[l2+(12)2]2l_{1}=l_{4}=\frac{ml^{2}}{12}+M\left[\sqrt{l^{2}+\left(\frac{1}{2}\right)^{2}}\right]^{2} Putting all values we get Moment of inertia, l=10(ml23)l=10\left(\frac{ml^{2}}{3}\right)