Solveeit Logo

Question

Physics Question on work, energy and power

A thin rod MNMN, free to rotate in the vertical plane about the fixed end NN, is held horizontal. When the end MM is released the speed of this end, when the rod makes an angle α\alpha with the horizontal, will be proportional to : (see figure)

A

sinα\sqrt{\sin \, \alpha}

B

sinα{\sin \, \alpha}

C

cosα\sqrt{\cos\, \alpha}

D

cosα{\cos\, \alpha}

Answer

sinα\sqrt{\sin \, \alpha}

Explanation

Solution

When the end MM is released and rod makes angle α\alpha with horizontal, the displacement of centre of mass is L2sinα.\frac{L}{2} \sin \alpha . Now,
we know mgL2sinα=12Iω2m g \frac{L}{2} \sin \alpha=\frac{1}{2} I \omega^{2}
Here, I=mL23;I=\frac{m L^{2}}{3} ; therefore,
mgL2sinα=12mL23ω2m g \frac{L}{2} \sin \alpha=\frac{1}{2} \frac{m L^{2}}{3} \omega^{2}
ω2=3gsinαL\Rightarrow \omega^{2}=\frac{3 g \sin \alpha}{L}
ω=3gsinαL\Rightarrow \omega=\sqrt{\frac{3 g \sin \alpha}{L}}
ωsinα\Rightarrow \omega \propto \sqrt{\sin \alpha}